These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 24616099)

  • 41. Four ARF GAPs in Saccharomyces cerevisiae have both overlapping and distinct functions.
    Zhang CJ; Bowzard JB; Anido A; Kahn RA
    Yeast; 2003 Mar; 20(4):315-30. PubMed ID: 12627398
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Arfs at a glance.
    Jackson CL; Bouvet S
    J Cell Sci; 2014 Oct; 127(Pt 19):4103-9. PubMed ID: 25146395
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Consensus nomenclature for the human ArfGAP domain-containing proteins.
    Kahn RA; Bruford E; Inoue H; Logsdon JM; Nie Z; Premont RT; Randazzo PA; Satake M; Theibert AB; Zapp ML; Cassel D
    J Cell Biol; 2008 Sep; 182(6):1039-44. PubMed ID: 18809720
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Arf GAPs and membrane traffic.
    Nie Z; Randazzo PA
    J Cell Sci; 2006 Apr; 119(Pt 7):1203-11. PubMed ID: 16554436
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The ARF-like 2 (ARL2)-binding protein, BART. Purification, cloning, and initial characterization.
    Sharer JD; Kahn RA
    J Biol Chem; 1999 Sep; 274(39):27553-61. PubMed ID: 10488091
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A new paxillin-binding protein, PAG3/Papalpha/KIAA0400, bearing an ADP-ribosylation factor GTPase-activating protein activity, is involved in paxillin recruitment to focal adhesions and cell migration.
    Kondo A; Hashimoto S; Yano H; Nagayama K; Mazaki Y; Sabe H
    Mol Biol Cell; 2000 Apr; 11(4):1315-27. PubMed ID: 10749932
    [TBL] [Abstract][Full Text] [Related]  

  • 47. AGAP2: Modulating TGFβ1-Signaling in the Regulation of Liver Fibrosis.
    Navarro-Corcuera A; Ansorena E; Montiel-Duarte C; Iraburu MJ
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32092977
    [TBL] [Abstract][Full Text] [Related]  

  • 48. ARF family G proteins and their regulators: roles in membrane transport, development and disease.
    Donaldson JG; Jackson CL
    Nat Rev Mol Cell Biol; 2011 Jun; 12(6):362-75. PubMed ID: 21587297
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interaction of the N terminus of ADP-ribosylation factor with the PH domain of the GTPase-activating protein ASAP1 requires phosphatidylinositol 4,5-bisphosphate.
    Roy NS; Jian X; Soubias O; Zhai P; Hall JR; Dagher JN; Coussens NP; Jenkins LM; Luo R; Akpan IO; Hall MD; Byrd RA; Yohe ME; Randazzo PA
    J Biol Chem; 2019 Nov; 294(46):17354-17370. PubMed ID: 31591270
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The adaptor protein and Arf GTPase-activating protein Cat-1/Git-1 is required for cellular transformation.
    Yoo SM; Antonyak MA; Cerione RA
    J Biol Chem; 2012 Sep; 287(37):31462-70. PubMed ID: 22807447
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Assays used in the analysis of Arl2 and its binding partners.
    Bowzard JB; Sharer JD; Kahn RA
    Methods Enzymol; 2005; 404():453-67. PubMed ID: 16413291
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Novel C-terminal motif within Sec7 domain of guanine nucleotide exchange factors regulates ADP-ribosylation factor (ARF) binding and activation.
    Lowery J; Szul T; Seetharaman J; Jian X; Su M; Forouhar F; Xiao R; Acton TB; Montelione GT; Lin H; Wright JW; Lee E; Holloway ZG; Randazzo PA; Tong L; Sztul E
    J Biol Chem; 2011 Oct; 286(42):36898-906. PubMed ID: 21828055
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Selective amplification of additional members of the ADP-ribosylation factor (ARF) family: cloning of additional human and Drosophila ARF-like genes.
    Clark J; Moore L; Krasinskas A; Way J; Battey J; Tamkun J; Kahn RA
    Proc Natl Acad Sci U S A; 1993 Oct; 90(19):8952-6. PubMed ID: 8415637
    [TBL] [Abstract][Full Text] [Related]  

  • 54. ARD1, a 64-kDa bifunctional protein containing an 18-kDa GTP-binding ADP-ribosylation factor domain and a 46-kDa GTPase-activating domain.
    Vitale N; Moss J; Vaughan M
    Proc Natl Acad Sci U S A; 1996 Mar; 93(5):1941-4. PubMed ID: 8700863
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Promiscuous and specific phospholipid binding by domains in ZAC, a membrane-associated Arabidopsis protein with an ARF GAP zinc finger and a C2 domain.
    Jensen RB; Lykke-Andersen K; Frandsen GI; Nielsen HB; Haseloff J; Jespersen HM; Mundy J; Skriver K
    Plant Mol Biol; 2000 Dec; 44(6):799-814. PubMed ID: 11202441
    [TBL] [Abstract][Full Text] [Related]  

  • 56. GGAPs, a new family of bifunctional GTP-binding and GTPase-activating proteins.
    Xia C; Ma W; Stafford LJ; Liu C; Gong L; Martin JF; Liu M
    Mol Cell Biol; 2003 Apr; 23(7):2476-88. PubMed ID: 12640130
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Contribution of AZAP-Type Arf GAPs to cancer cell migration and invasion.
    Ha VL; Luo R; Nie Z; Randazzo PA
    Adv Cancer Res; 2008; 101():1-28. PubMed ID: 19055940
    [TBL] [Abstract][Full Text] [Related]  

  • 58. DEF-1/ASAP1 is a GTPase-activating protein (GAP) for ARF1 that enhances cell motility through a GAP-dependent mechanism.
    Furman C; Short SM; Subramanian RR; Zetter BR; Roberts TM
    J Biol Chem; 2002 Mar; 277(10):7962-9. PubMed ID: 11773070
    [TBL] [Abstract][Full Text] [Related]  

  • 59. GRASP and IPCEF promote ARF-to-Rac signaling and cell migration by coordinating the association of ARNO/cytohesin 2 with Dock180.
    White DT; McShea KM; Attar MA; Santy LC
    Mol Biol Cell; 2010 Feb; 21(4):562-71. PubMed ID: 20016009
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular aspects of the cellular activities of ADP-ribosylation factors.
    Randazzo PA; Nie Z; Miura K; Hsu VW
    Sci STKE; 2000 Nov; 2000(59):re1. PubMed ID: 11752622
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.