BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 24616365)

  • 1. A fluorescent polymeric quantum dot/aptamer superstructure and its application for imaging of cancer cells.
    Jie G; Zhao Y; Qin Y
    Chem Asian J; 2014 May; 9(5):1261-4. PubMed ID: 24616365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A recognition-before-labeling strategy for sensitive detection of lung cancer cells with a quantum dot-aptamer complex.
    Wu C; Liu J; Zhang P; Li J; Ji H; Yang X; Wang K
    Analyst; 2015 Sep; 140(17):6100-7. PubMed ID: 26200911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-pot synthesized aptamer-functionalized CdTe:Zn2+ quantum dots for tumor-targeted fluorescence imaging in vitro and in vivo.
    Zhang C; Ji X; Zhang Y; Zhou G; Ke X; Wang H; Tinnefeld P; He Z
    Anal Chem; 2013 Jun; 85(12):5843-9. PubMed ID: 23682757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aptamer-mediated indirect quantum dot labeling and fluorescent imaging of target proteins in living cells.
    Liu J; Zhang P; Yang X; Wang K; Guo Q; Huang J; Li W
    Nanotechnology; 2014 Dec; 25(50):505502. PubMed ID: 25422408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum dot-DNA aptamer conjugates coupled with capillary electrophoresis: A universal strategy for ratiometric detection of organophosphorus pesticides.
    Tang T; Deng J; Zhang M; Shi G; Zhou T
    Talanta; 2016; 146():55-61. PubMed ID: 26695234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aptamer-conjugated PEGylated quantum dots targeting epidermal growth factor receptor variant III for fluorescence imaging of glioma.
    Tang J; Huang N; Zhang X; Zhou T; Tan Y; Pi J; Pi L; Cheng S; Zheng H; Cheng Y
    Int J Nanomedicine; 2017; 12():3899-3911. PubMed ID: 28579776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted quantum dots fluorescence probes functionalized with aptamer and peptide for transferrin receptor on tumor cells.
    Zhang MZ; Yu RN; Chen J; Ma ZY; Zhao YD
    Nanotechnology; 2012 Dec; 23(48):485104. PubMed ID: 23138109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescent quantum dot-labeled aptamer bioprobes specifically targeting mouse liver cancer cells.
    Zhang J; Jia X; Lv XJ; Deng YL; Xie HY
    Talanta; 2010 Apr; 81(1-2):505-9. PubMed ID: 20188954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum dot-aptamer nanoprobes for recognizing and labeling influenza A virus particles.
    Cui ZQ; Ren Q; Wei HP; Chen Z; Deng JY; Zhang ZP; Zhang XE
    Nanoscale; 2011 Jun; 3(6):2454-7. PubMed ID: 21509395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA-Programmed Quantum Dot Polymerization for Ultrasensitive Molecular Imaging of Cancer Cells.
    Li Z; He X; Luo X; Wang L; Ma N
    Anal Chem; 2016 Oct; 88(19):9355-9358. PubMed ID: 27649276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel aptamer functionalized CuInS2 quantum dots probe for daunorubicin sensing and near infrared imaging of prostate cancer cells.
    Lin Z; Ma Q; Fei X; Zhang H; Su X
    Anal Chim Acta; 2014 Mar; 818():54-60. PubMed ID: 24626403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum dot-nucleic acid/aptamer bioconjugate-based fluorimetric biosensors.
    Zhou D
    Biochem Soc Trans; 2012 Aug; 40(4):635-9. PubMed ID: 22817707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supersandwich cytosensor for selective and ultrasensitive detection of cancer cells using aptamer-DNA concatamer-quantum dots probes.
    Liu H; Xu S; He Z; Deng A; Zhu JJ
    Anal Chem; 2013 Mar; 85(6):3385-92. PubMed ID: 23418929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel magnetic Fe3O4@CdSe composite quantum dot-based electrochemiluminescence detection of thrombin by a multiple DNA cycle amplification strategy.
    Jie G; Yuan J
    Anal Chem; 2012 Mar; 84(6):2811-7. PubMed ID: 22320223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-photon imaging of aptamer-functionalized Copolymer/TPdye fluorescent organic dots targeted to cancer cells.
    Yan H; Ren W; Liu S; Yu Y
    Anal Chim Acta; 2020 Apr; 1106():199-206. PubMed ID: 32145849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time and label-free analyte detection in a flow-through mode using immobilized fluorescent aptamer/quantum dots molecular switches.
    Bogomolova A; Aldissi M
    Biosens Bioelectron; 2015 Apr; 66():290-6. PubMed ID: 25437366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aptamer-based microfluidic beads array sensor for simultaneous detection of multiple analytes employing multienzyme-linked nanoparticle amplification and quantum dots labels.
    Zhang H; Hu X; Fu X
    Biosens Bioelectron; 2014 Jul; 57():22-9. PubMed ID: 24534576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quantum dot-aptamer beacon using a DNA intercalating dye as the FRET reporter: application to label-free thrombin detection.
    Chi CW; Lao YH; Li YS; Chen LC
    Biosens Bioelectron; 2011 Mar; 26(7):3346-52. PubMed ID: 21306887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical detection of lead and potassium ions using a quantum-dot-based aptamer nanosensor.
    Meshik X; Xu K; Dutta M; Stroscio MA
    IEEE Trans Nanobioscience; 2014 Jun; 13(2):161-4. PubMed ID: 24771595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aptamer-based detection of epithelial tumor marker mucin 1 with quantum dot-based fluorescence readout.
    Cheng AK; Su H; Wang YA; Yu HZ
    Anal Chem; 2009 Aug; 81(15):6130-9. PubMed ID: 19572710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.