These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 24616369)

  • 1. The role of cuprous oxide seeds in the one-pot and seeded syntheses of copper nanowires.
    Ye S; Rathmell AR; Ha YC; Wilson AR; Wiley BJ
    Small; 2014 May; 10(9):1771-8. PubMed ID: 24616369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How Copper Nanowires Grow and How To Control Their Properties.
    Ye S; Stewart IE; Chen Z; Li B; Rathmell AR; Wiley BJ
    Acc Chem Res; 2016 Mar; 49(3):442-51. PubMed ID: 26872359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper nanowire networks with transparent oxide shells that prevent oxidation without reducing transmittance.
    Chen Z; Ye S; Stewart IE; Wiley BJ
    ACS Nano; 2014 Sep; 8(9):9673-9. PubMed ID: 25180448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating simulations and experiments to predict sheet resistance and optical transmittance in nanowire films for transparent conductors.
    Mutiso RM; Sherrott MC; Rathmell AR; Wiley BJ; Winey KI
    ACS Nano; 2013 Sep; 7(9):7654-63. PubMed ID: 23930701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Embedment of anodized p-type Cuâ‚‚O thin films with CuO nanowires for improvement in photoelectrochemical stability.
    Wang P; Ng YH; Amal R
    Nanoscale; 2013 Apr; 5(7):2952-8. PubMed ID: 23455357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films.
    Ye S; Rathmell AR; Stewart IE; Ha YC; Wilson AR; Chen Z; Wiley BJ
    Chem Commun (Camb); 2014 Mar; 50(20):2562-4. PubMed ID: 24346590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growing Oxide Nanowires and Nanowire Networks by Solid State Contact Diffusion into Solution-Processed Thin Films.
    Glynn C; McNulty D; Geaney H; O'Dwyer C
    Small; 2016 Nov; 12(43):5954-5962. PubMed ID: 27622769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of Ultrathin Copper Nanowires Using Tris(trimethylsilyl)silane for High-Performance and Low-Haze Transparent Conductors.
    Cui F; Yu Y; Dou L; Sun J; Yang Q; Schildknecht C; Schierle-Arndt K; Yang P
    Nano Lett; 2015 Nov; 15(11):7610-5. PubMed ID: 26496181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable synthesis of cuprous and cupric oxide nanotubes from electrodeposited copper nanowires.
    Lee YI; Goo YS; Chang CH; Lee KJ; Myung NV; Choa YH
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1455-8. PubMed ID: 21456211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-temperature large-scale synthesis and electrical testing of ultralong copper nanowires.
    Mohl M; Pusztai P; Kukovecz A; Konya Z; Kukkola J; Kordas K; Vajtai R; Ajayan PM
    Langmuir; 2010 Nov; 26(21):16496-502. PubMed ID: 20597526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films.
    Bergin SM; Chen YH; Rathmell AR; Charbonneau P; Li ZY; Wiley BJ
    Nanoscale; 2012 Mar; 4(6):1996-2004. PubMed ID: 22349106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-seeded growth of five-fold twinned copper nanowires: mechanistic study, characterization, and SERS applications.
    Yang HJ; He SY; Tuan HY
    Langmuir; 2014 Jan; 30(2):602-10. PubMed ID: 24367924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of length dispersity and film fabrication on the sheet resistance of copper nanowire transparent conductors.
    Borchert JW; Stewart IE; Ye S; Rathmell AR; Wiley BJ; Winey KI
    Nanoscale; 2015 Sep; 7(34):14496-504. PubMed ID: 26260532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution-phase epitaxial growth of quasi-monocrystalline cuprous oxide on metal nanowires.
    Sciacca B; Mann SA; Tichelaar FD; Zandbergen HW; van Huis MA; Garnett EC
    Nano Lett; 2014 Oct; 14(10):5891-8. PubMed ID: 25233392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons.
    Kas R; Kortlever R; Milbrat A; Koper MT; Mul G; Baltrusaitis J
    Phys Chem Chem Phys; 2014 Jun; 16(24):12194-201. PubMed ID: 24817571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal nanowire networks: the next generation of transparent conductors.
    Ye S; Rathmell AR; Chen Z; Stewart IE; Wiley BJ
    Adv Mater; 2014 Oct; 26(39):6670-87. PubMed ID: 25252266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled fabrication of photoactive copper oxide-cobalt oxide nanowire heterostructures for efficient phenol photodegradation.
    Shi W; Chopra N
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5590-607. PubMed ID: 22985284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution-processed copper-nickel nanowire anodes for organic solar cells.
    Stewart IE; Rathmell AR; Yan L; Ye S; Flowers PF; You W; Wiley BJ
    Nanoscale; 2014 Jun; 6(11):5980-8. PubMed ID: 24777655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optically transparent water oxidation catalysts based on copper nanowires.
    Chen Z; Rathmell AR; Ye S; Wilson AR; Wiley BJ
    Angew Chem Int Ed Engl; 2013 Dec; 52(51):13708-11. PubMed ID: 24136831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of hybrid structures: copper oxide nanocrystals templated on ultralong copper nanowires for open network sensing at room temperature.
    Kevin M; Ong WL; Lee GH; Ho GW
    Nanotechnology; 2011 Jun; 22(23):235701. PubMed ID: 21474867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.