These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 24616369)

  • 21. Transparent metal oxide nanowire transistors.
    Chen D; Liu Z; Liang B; Wang X; Shen G
    Nanoscale; 2012 May; 4(10):3001-12. PubMed ID: 22495655
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solution-grown 3D Cu2O networks for efficient solar water splitting.
    Kargar A; Partokia SS; Niu MT; Allameh P; Yang M; May S; Cheung JS; Sun K; Xu K; Wang D
    Nanotechnology; 2014 May; 25(20):205401. PubMed ID: 24784802
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Confining grains of textured Cu2O films to single-crystal nanowires and resultant change in resistive switching characteristics.
    Deng XL; Hong S; Hwang I; Kim JS; Jeon JH; Park YC; Lee J; Kang SO; Kawai T; Park BH
    Nanoscale; 2012 Mar; 4(6):2029-33. PubMed ID: 22334037
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanowire-based all-oxide solar cells.
    Yuhas BD; Yang P
    J Am Chem Soc; 2009 Mar; 131(10):3756-61. PubMed ID: 19275263
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Growth Mechanism of Five-Fold Twinned Ag Nanowires from Multiscale Theory and Simulations.
    Qi X; Chen Z; Yan T; Fichthorn KA
    ACS Nano; 2019 Apr; 13(4):4647-4656. PubMed ID: 30869861
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface-initiated atom transfer radical polymerization-induced transformation of selenium nanowires into copper selenide@polystyrene core-shell nanowires.
    Wang MC; Gates BD
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9546-53. PubMed ID: 24041404
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct formation of small Cu2O nanocubes, octahedra, and octapods for efficient synthesis of triazoles.
    Tsai YH; Chanda K; Chu YT; Chiu CY; Huang MH
    Nanoscale; 2014 Aug; 6(15):8704-9. PubMed ID: 24947435
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Copper oxide nanowires: a review of growth.
    Filipič G; Cvelbar U
    Nanotechnology; 2012 May; 23(19):194001. PubMed ID: 22538410
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Epitaxially aligned cuprous oxide nanowires for all-oxide, single-wire solar cells.
    Brittman S; Yoo Y; Dasgupta NP; Kim SI; Kim B; Yang P
    Nano Lett; 2014 Aug; 14(8):4665-70. PubMed ID: 25014113
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor.
    Deng S; Tjoa V; Fan HM; Tan HR; Sayle DC; Olivo M; Mhaisalkar S; Wei J; Sow CH
    J Am Chem Soc; 2012 Mar; 134(10):4905-17. PubMed ID: 22332949
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Forest of gold nanowires: a new type of nanocrystal growth.
    He J; Wang Y; Feng Y; Qi X; Zeng Z; Liu Q; Teo WS; Gan CL; Zhang H; Chen H
    ACS Nano; 2013 Mar; 7(3):2733-40. PubMed ID: 23442034
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spontaneous self-organization of Cu2O/CuO core-shell nanowires from copper nanoparticles.
    Ji JY; Shih PH; Yang CC; Chan TS; Ma YR; Wu SY
    Nanotechnology; 2010 Jan; 21(4):045603. PubMed ID: 20009171
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controllable morphology and conductivity of electrodeposited Cu₂O thin film: effect of surfactants.
    Yang Y; Han J; Ning X; Cao W; Xu W; Guo L
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22534-43. PubMed ID: 25453498
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Room-temperature solution synthesis of Ag nanoparticle functionalized molybdenum oxide nanowires and their catalytic applications.
    Dong W; Huang H; Zhu Y; Li X; Wang X; Li C; Chen B; Wang G; Shi Z
    Nanotechnology; 2012 Oct; 23(42):425602. PubMed ID: 23032171
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flexible transparent conducting hybrid film using a surface-embedded copper nanowire network: a highly oxidation-resistant copper nanowire electrode for flexible optoelectronics.
    Im HG; Jung SH; Jin J; Lee D; Lee J; Lee D; Lee JY; Kim ID; Bae BS
    ACS Nano; 2014 Oct; 8(10):10973-9. PubMed ID: 25211125
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controllable synthesis of CuO nanowires and Cu2O crystals with shape evolution via gamma-irradiation.
    Hai Z; Zhu C; Huang J; Liu H; Chen J
    Inorg Chem; 2010 Aug; 49(16):7217-9. PubMed ID: 20690727
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Compositional disorder and its effect on the thermoelectric performance of Zn₃P₂ nanowire-copper nanoparticle composites.
    Brockway L; Vasiraju V; Vaddiraju S
    Nanotechnology; 2014 Mar; 25(12):125402. PubMed ID: 24577096
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel.
    Lee J; Lee P; Lee H; Lee D; Lee SS; Ko SH
    Nanoscale; 2012 Oct; 4(20):6408-14. PubMed ID: 22952107
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The growth of ultralong and highly blue luminescent gallium oxide nanowires and nanobelts, and direct horizontal nanowire growth on substrates.
    Kuo CL; Huang MH
    Nanotechnology; 2008 Apr; 19(15):155604. PubMed ID: 21825618
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solution-phase synthesis of single-crystal Cu3Si nanowire arrays on diverse substrates with dual functions as high-performance field emitters and efficient anti-reflective layers.
    Yuan FW; Wang CY; Li GA; Chang SH; Chu LW; Chen LJ; Tuan HY
    Nanoscale; 2013 Oct; 5(20):9875-81. PubMed ID: 23979254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.