BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 24616447)

  • 1. Plasmonic antennas and zero-mode waveguides to enhance single molecule fluorescence detection and fluorescence correlation spectroscopy toward physiological concentrations.
    Punj D; Ghenuche P; Moparthi SB; de Torres J; Grigoriev V; Rigneault H; Wenger J
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2014; 6(3):268-82. PubMed ID: 24616447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FRET enhancement in aluminum zero-mode waveguides.
    de Torres J; Ghenuche P; Moparthi SB; Grigoriev V; Wenger J
    Chemphyschem; 2015 Mar; 16(4):782-8. PubMed ID: 25640052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanophotonic approaches for nanoscale imaging and single-molecule detection at ultrahigh concentrations.
    Mivelle M; Van Zanten TS; Manzo C; Garcia-Parajo MF
    Microsc Res Tech; 2014 Jul; 77(7):537-45. PubMed ID: 24710842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold nanoparticles for enhanced single molecule fluorescence analysis at micromolar concentration.
    Punj D; de Torres J; Rigneault H; Wenger J
    Opt Express; 2013 Nov; 21(22):27338-43. PubMed ID: 24216956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting the light-metal interaction for biomolecular sensing and imaging.
    Höppener C; Novotny L
    Q Rev Biophys; 2012 May; 45(2):209-55. PubMed ID: 22559015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FRET microscopy in the living cell: different approaches, strengths and weaknesses.
    Padilla-Parra S; Tramier M
    Bioessays; 2012 May; 34(5):369-76. PubMed ID: 22415767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining single-molecule manipulation and single-molecule detection.
    Cordova JC; Das DK; Manning HW; Lang MJ
    Curr Opin Struct Biol; 2014 Oct; 28():142-8. PubMed ID: 25255052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FRET and FCS--friends or foes?
    Sahoo H; Schwille P
    Chemphyschem; 2011 Feb; 12(3):532-41. PubMed ID: 21308943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving zero-mode waveguide structure for enhancing signal-to-noise ratio of real-time single-molecule fluorescence imaging: a computational study.
    Tanii T; Akahori R; Higano S; Okubo K; Yamamoto H; Ueno T; Funatsu T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012727. PubMed ID: 23944510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zero-mode waveguides: sub-wavelength nanostructures for single molecule studies at high concentrations.
    Moran-Mirabal JM; Craighead HG
    Methods; 2008 Sep; 46(1):11-7. PubMed ID: 18586103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-molecule imaging of cell surfaces using near-field nanoscopy.
    Hinterdorfer P; Garcia-Parajo MF; Dufrêne YF
    Acc Chem Res; 2012 Mar; 45(3):327-36. PubMed ID: 21992025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical characteristics of atomic force microscopy tips for single-molecule fluorescence applications.
    Gaiduk A; Kühnemuth R; Antonik M; Seidel CA
    Chemphyschem; 2005 May; 6(5):976-83. PubMed ID: 15884085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence correlation spectroscopy: molecular recognition at the single molecule level.
    Van Craenenbroeck E; Engelborghs Y
    J Mol Recognit; 2000; 13(2):93-100. PubMed ID: 10822253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broadband Fluorescence Enhancement with Self-Assembled Silver Nanoparticle Optical Antennas.
    Vietz C; Kaminska I; Sanz Paz M; Tinnefeld P; Acuna GP
    ACS Nano; 2017 May; 11(5):4969-4975. PubMed ID: 28445644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zero-mode waveguides for single-molecule analysis at high concentrations.
    Levene MJ; Korlach J; Turner SW; Foquet M; Craighead HG; Webb WW
    Science; 2003 Jan; 299(5607):682-6. PubMed ID: 12560545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing plasma membrane dynamics at the single-molecule level.
    Li X; Luu DT; Maurel C; Lin J
    Trends Plant Sci; 2013 Nov; 18(11):617-24. PubMed ID: 23911558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging live-cell dynamics and structure at the single-molecule level.
    Liu Z; Lavis LD; Betzig E
    Mol Cell; 2015 May; 58(4):644-59. PubMed ID: 26000849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence correlation spectroscopy for the detection and study of single molecules in biology.
    Medina MA; Schwille P
    Bioessays; 2002 Aug; 24(8):758-64. PubMed ID: 12210537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unfolded protein and peptide dynamics investigated with single-molecule FRET and correlation spectroscopy from picoseconds to seconds.
    Nettels D; Hoffmann A; Schuler B
    J Phys Chem B; 2008 May; 112(19):6137-46. PubMed ID: 18410159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid analysis of Forster resonance energy transfer by two-color global fluorescence correlation spectroscopy: trypsin proteinase reaction.
    Eggeling C; Kask P; Winkler D; Jäger S
    Biophys J; 2005 Jul; 89(1):605-18. PubMed ID: 15849243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.