These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 24616610)

  • 1. Effects of active versus passive recovery on power output during repeated bouts of short term, high intensity exercise.
    Connolly DA; Brennan KM; Lauzon CD
    J Sports Sci Med; 2003 Jun; 2(2):47-51. PubMed ID: 24616610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term glycine propionyl-l-carnitine supplemention and paradoxical effects on repeated anaerobic sprint performance.
    Jacobs PL; Goldstein ER
    J Int Soc Sports Nutr; 2010 Oct; 7():35. PubMed ID: 20979659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human power output during repeated sprint cycle exercise: the influence of thermal stress.
    Ball D; Burrows C; Sargeant AJ
    Eur J Appl Physiol Occup Physiol; 1999 Mar; 79(4):360-6. PubMed ID: 10090637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of leg massage on recovery from high intensity cycling exercise.
    Robertson A; Watt JM; Galloway SD
    Br J Sports Med; 2004 Apr; 38(2):173-6. PubMed ID: 15039254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of active recovery on plasma lactate and anaerobic power following repeated intensive exercise.
    Ahmaidi S; Granier P; Taoutaou Z; Mercier J; Dubouchaud H; Prefaut C
    Med Sci Sports Exerc; 1996 Apr; 28(4):450-6. PubMed ID: 8778550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of active vs. passive recovery on work performed during serial supramaximal exercise tests.
    Spierer DK; Goldsmith R; Baran DA; Hryniewicz K; Katz SD
    Int J Sports Med; 2004 Feb; 25(2):109-14. PubMed ID: 14986193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of different cryotherapy recovery methods in elite junior cyclists.
    Chan YY; Yim YM; Bercades D; Cheng TT; Ngo KL; Lo KK
    Asia Pac J Sports Med Arthrosc Rehabil Technol; 2016 Jul; 5():17-23. PubMed ID: 29264264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The physiological effects of low-intensity neuromuscular electrical stimulation (NMES) on short-term recovery from supra-maximal exercise bouts in male triathletes.
    Malone JK; Coughlan GF; Crowe L; Gissane GC; Caulfield B
    Eur J Appl Physiol; 2012 Jul; 112(7):2421-32. PubMed ID: 22045413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active Recovery between Interval Bouts Reduces Blood Lactate While Improving Subsequent Exercise Performance in Trained Men.
    Nalbandian HM; Radak Z; Takeda M
    Sports (Basel); 2017 Jun; 5(2):. PubMed ID: 29910397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of active recovery on power output during repeated maximal sprint cycling.
    Bogdanis GC; Nevill ME; Lakomy HK; Graham CM; Louis G
    Eur J Appl Physiol Occup Physiol; 1996; 74(5):461-9. PubMed ID: 8954294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycine propionyl-L-carnitine produces enhanced anaerobic work capacity with reduced lactate accumulation in resistance trained males.
    Jacobs PL; Goldstein ER; Blackburn W; Orem I; Hughes JJ
    J Int Soc Sports Nutr; 2009 Apr; 6():9. PubMed ID: 19341458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of passive versus active recovery on power output over six repeated wingate sprints.
    Lopez EI; Smoliga JM; Zavorsky GS
    Res Q Exerc Sport; 2014 Dec; 85(4):519-26. PubMed ID: 25412134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of various recovery modalities on subsequent performance, in consecutive supramaximal exercise.
    Thiriet P; Gozal D; Wouassi D; Oumarou T; Gelas H; Lacour JR
    J Sports Med Phys Fitness; 1993 Jun; 33(2):118-29. PubMed ID: 8412047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of water-based recovery on blood lactate removal after high-intensity exercise.
    Lucertini F; Gervasi M; D'Amen G; Sisti D; Rocchi MBL; Stocchi V; Benelli P
    PLoS One; 2017; 12(9):e0184240. PubMed ID: 28877225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery of power output and heart rate kinetics during repeated bouts of rowing exercise with different rest intervals.
    Mavrommataki E; Bogdanis GC; Kaloupsis S; Maridaki M
    J Sports Sci Med; 2006; 5(1):115-22. PubMed ID: 24198688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of work-matched moderate- and high-intensity warm-up on power output during 2-min supramaximal cycling.
    Fujii N; Nishida Y; Ogawa T; Tanigawa S; Nishiyasu T
    Biol Sport; 2018 Sep; 35(3):223-228. PubMed ID: 30449939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of active and passive recovery on lactate removal and subsequent isokinetic muscle function.
    Bond V; Adams RG; Tearney RJ; Gresham K; Ruff W
    J Sports Med Phys Fitness; 1991 Sep; 31(3):357-61. PubMed ID: 1798305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The rate of lactate removal after maximal exercise: the effect of intensity during active recovery.
    Riganas CS; Papadopoulou Z; Psichas N; Skoufas D; Gissis I; Sampanis M; Paschalis V; Vrabas IS
    J Sports Med Phys Fitness; 2015 Oct; 55(10):1058-63. PubMed ID: 25920410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Randomized controlled trial of Micro-Mobile Compression® on lactate clearance and subsequent exercise performance in elite male cyclists.
    San Millán I; Bing K; Brill C; Hill JC; Miller LE
    Open Access J Sports Med; 2013; 4():221-7. PubMed ID: 24379728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of active and passive recovery on short-term, high intensity power output.
    Signorile JF; Ingalls C; Tremblay LM
    Can J Appl Physiol; 1993 Mar; 18(1):31-42. PubMed ID: 8471992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.