BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 24616695)

  • 1. Synergetic motor control paradigm for optimizing energy efficiency of multijoint reaching via tacit learning.
    Hayashibe M; Shimoda S
    Front Comput Neurosci; 2014; 8():21. PubMed ID: 24616695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergence of motor synergy in vertical reaching task via tacit learning.
    Hayashibe M; Shimoda S
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4985-8. PubMed ID: 24110854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compensating for intersegmental dynamics across the shoulder, elbow, and wrist joints during feedforward and feedback control.
    Maeda RS; Cluff T; Gribble PL; Pruszynski JA
    J Neurophysiol; 2017 Oct; 118(4):1984-1997. PubMed ID: 28701534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directional control of planar human arm movement.
    Gottlieb GL; Song Q; Almeida GL; Hong DA; Corcos D
    J Neurophysiol; 1997 Dec; 78(6):2985-98. PubMed ID: 9405518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction torque contributes to planar reaching at slow speed.
    Yamasaki H; Tagami Y; Fujisawa H; Hoshi F; Nagasaki H
    Biomed Eng Online; 2008 Oct; 7():27. PubMed ID: 18940016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The timing of control signals underlying fast point-to-point arm movements.
    Ghafouri M; Feldman AG
    Exp Brain Res; 2001 Apr; 137(3-4):411-23. PubMed ID: 11355386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A biologically inspired neural network controller for ballistic arm movements.
    Bernabucci I; Conforto S; Capozza M; Accornero N; Schmid M; D'Alessio T
    J Neuroeng Rehabil; 2007 Sep; 4():33. PubMed ID: 17767712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multijoint arm movements in cerebellar ataxia: abnormal control of movement dynamics.
    Topka H; Konczak J; Schneider K; Boose A; Dichgans J
    Exp Brain Res; 1998 Apr; 119(4):493-503. PubMed ID: 9588784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feedforward and Feedback Control Share an Internal Model of the Arm's Dynamics.
    Maeda RS; Cluff T; Gribble PL; Pruszynski JA
    J Neurosci; 2018 Dec; 38(49):10505-10514. PubMed ID: 30355628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spinal circuits can accommodate interaction torques during multijoint limb movements.
    Buhrmann T; Di Paolo EA
    Front Comput Neurosci; 2014; 8():144. PubMed ID: 25426061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling multijoint motor behavior.
    Hogan N; Bizzi E; Mussa-Ivaldi FA; Flash T
    Exerc Sport Sci Rev; 1987; 15():153-90. PubMed ID: 3297722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model for learning human reaching movements.
    Karniel A; Inbar GF
    Biol Cybern; 1997 Sep; 77(3):173-83. PubMed ID: 9352631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed.
    Emken JL; Benitez R; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2007 Mar; 4():8. PubMed ID: 17391527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hierarchical neural-network model for control and learning of voluntary movement.
    Kawato M; Furukawa K; Suzuki R
    Biol Cybern; 1987; 57(3):169-85. PubMed ID: 3676355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fuzzy neuronal model of motor control inspired by cerebellar pathways to online and gradually learn inverse biomechanical functions in the presence of delay.
    Salimi-Badr A; Ebadzadeh MM; Darlot C
    Biol Cybern; 2017 Dec; 111(5-6):421-438. PubMed ID: 28993878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Goal-related feedback guides motor exploration and redundancy resolution in human motor skill acquisition.
    Rohde M; Narioka K; Steil JJ; Klein LK; Ernst MO
    PLoS Comput Biol; 2019 Mar; 15(3):e1006676. PubMed ID: 30835770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of kinematic invariances of multijoint reaching movement.
    Goodman SR; Gottlieb GL
    Biol Cybern; 1995 Sep; 73(4):311-22. PubMed ID: 7578472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning with slight forgetting optimizes sensorimotor transformation in redundant motor systems.
    Hirashima M; Nozaki D
    PLoS Comput Biol; 2012; 8(6):e1002590. PubMed ID: 22761568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proximal versus distal control of two-joint planar reaching movements in the presence of neuromuscular noise.
    Nguyen HP; Dingwell JB
    J Biomech Eng; 2012 Jun; 134(6):061007. PubMed ID: 22757504
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.