BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 24616702)

  • 1. The role of pannexin hemichannels in inflammation and regeneration.
    Makarenkova HP; Shestopalov VI
    Front Physiol; 2014; 5():63. PubMed ID: 24616702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Connexin and pannexin hemichannels in inflammatory responses of glia and neurons.
    Bennett MV; Garré JM; Orellana JA; Bukauskas FF; Nedergaard M; Sáez JC
    Brain Res; 2012 Dec; 1487():3-15. PubMed ID: 22975435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of pannexin and connexin channels and their functional role in skeletal muscles.
    Sáez JC; Cisterna BA; Vargas A; Cardozo CP
    Cell Mol Life Sci; 2015 Aug; 72(15):2929-35. PubMed ID: 26084874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purinergic Signaling in Gut Inflammation: The Role of Connexins and Pannexins.
    Diezmos EF; Bertrand PP; Liu L
    Front Neurosci; 2016; 10():311. PubMed ID: 27445679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maxi-anion channel and pannexin 1 hemichannel constitute separate pathways for swelling-induced ATP release in murine L929 fibrosarcoma cells.
    Islam MR; Uramoto H; Okada T; Sabirov RZ; Okada Y
    Am J Physiol Cell Physiol; 2012 Nov; 303(9):C924-35. PubMed ID: 22785119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myeloid Pannexin-1 mediates acute leukocyte infiltration and leads to worse outcomes after brain trauma.
    Seo JH; Dalal MS; Calderon F; Contreras JE
    J Neuroinflammation; 2020 Aug; 17(1):245. PubMed ID: 32819386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pannexin1 channels act downstream of P2X 7 receptors in ATP-induced murine T-cell death.
    Shoji KF; Sáez PJ; Harcha PA; Aguila HL; Sáez JC
    Channels (Austin); 2014; 8(2):142-56. PubMed ID: 24590064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human Pannexin 1 channel: Insight in structure-function mechanism and its potential physiological roles.
    Bhat EA; Sajjad N
    Mol Cell Biochem; 2021 Mar; 476(3):1529-1540. PubMed ID: 33394272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP signaling in brain: release, excitotoxicity and potential therapeutic targets.
    Cisneros-Mejorado A; Pérez-Samartín A; Gottlieb M; Matute C
    Cell Mol Neurobiol; 2015 Jan; 35(1):1-6. PubMed ID: 25096398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pannexin 1 Regulates Skeletal Muscle Regeneration by Promoting Bleb-Based Myoblast Migration and Fusion Through a Novel Lipid Based Signaling Mechanism.
    Suarez-Berumen K; Collins-Hooper H; Gromova A; Meech R; Sacco A; Dash PR; Mitchell R; Shestopalov VI; Woolley TE; Vaiyapuri S; Patel K; Makarenkova HP
    Front Cell Dev Biol; 2021; 9():736813. PubMed ID: 34676213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The bizarre pharmacology of the ATP release channel pannexin1.
    Dahl G; Qiu F; Wang J
    Neuropharmacology; 2013 Dec; 75():583-93. PubMed ID: 23499662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ATP required for potentiation of skeletal muscle contraction is released via pannexin hemichannels.
    Riquelme MA; Cea LA; Vega JL; Boric MP; Monyer H; Bennett MV; Frank M; Willecke K; Sáez JC
    Neuropharmacology; 2013 Dec; 75():594-603. PubMed ID: 23583931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Connexins and Pannexins in Bone and Skeletal Muscle.
    Plotkin LI; Davis HM; Cisterna BA; Sáez JC
    Curr Osteoporos Rep; 2017 Aug; 15(4):326-334. PubMed ID: 28647887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. P2X7 receptor cross-talk regulates ATP-induced pannexin 1 internalization.
    Boyce AKJ; Swayne LA
    Biochem J; 2017 Jun; 474(13):2133-2144. PubMed ID: 28495860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implications of pannexin 1 and pannexin 3 for keratinocyte differentiation.
    Celetti SJ; Cowan KN; Penuela S; Shao Q; Churko J; Laird DW
    J Cell Sci; 2010 Apr; 123(Pt 8):1363-72. PubMed ID: 20332104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of pannexin-1 channel activity by adiponectin in podocytes: Role of acid ceramidase activation.
    Li G; Zhang Q; Hong J; Ritter JK; Li PL
    Biochim Biophys Acta Mol Cell Biol Lipids; 2018 Oct; 1863(10):1246-1256. PubMed ID: 30077007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacological characterization of pannexin-1 currents expressed in mammalian cells.
    Ma W; Hui H; Pelegrin P; Surprenant A
    J Pharmacol Exp Ther; 2009 Feb; 328(2):409-18. PubMed ID: 19023039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of Pannexin 1 and Pannexin 3 during skeletal muscle development, regeneration, and Duchenne muscular dystrophy.
    Pham TL; St-Pierre ME; Ravel-Chapuis A; Parks TEC; Langlois S; Penuela S; Jasmin BJ; Cowan KN
    J Cell Physiol; 2018 Oct; 233(10):7057-7070. PubMed ID: 29744875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FGF-1 Triggers Pannexin-1 Hemichannel Opening in Spinal Astrocytes of Rodents and Promotes Inflammatory Responses in Acute Spinal Cord Slices.
    Garré JM; Yang G; Bukauskas FF; Bennett MV
    J Neurosci; 2016 Apr; 36(17):4785-801. PubMed ID: 27122036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pannexins in Acute Kidney Injury.
    Poudel N; Okusa MD
    Nephron; 2019; 143(3):158-161. PubMed ID: 31242494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.