These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 24617060)

  • 1. Effects of inorganic anions on cadmium sorption behaviours on titanate nanotube surfaces.
    Zhang L; Du AJ; Sun DD; Leckie JO
    Environ Technol; 2013; 34(21-24):3017-21. PubMed ID: 24617060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of synthesis temperature on the microstructures and basic dyes adsorption of titanate nanotubes.
    Lee CK; Lin KS; Wu CF; Lyu MD; Lo CC
    J Hazard Mater; 2008 Feb; 150(3):494-503. PubMed ID: 17561342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of Pb²⁺, Cd²⁺, Cu²⁺ and Cr³⁺ onto titanate nanotubes: competition and effect of inorganic ions.
    Liu W; Wang T; Borthwick AG; Wang Y; Yin X; Li X; Ni J
    Sci Total Environ; 2013 Jul; 456-457():171-80. PubMed ID: 23597796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of titanate nanotubes synthesized by a microwave hydrothermal method on photocatalytic decomposition of perfluorooctanoic acid.
    Chen YC; Lo SL; Kuo J
    Water Res; 2011 Aug; 45(14):4131-40. PubMed ID: 21703658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequestration of cadmium ions using titanate nanotube.
    Du AJ; Sun DD; Leckie JO
    J Hazard Mater; 2011 Mar; 187(1-3):401-6. PubMed ID: 21295400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of Pb(II) and Cd(II) from aqueous solutions using titanate nanotubes prepared via hydrothermal method.
    Xiong L; Chen C; Chen Q; Ni J
    J Hazard Mater; 2011 May; 189(3):741-8. PubMed ID: 21466911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption and desorption of Cd(II) onto titanate nanotubes and efficient regeneration of tubular structures.
    Wang T; Liu W; Xu N; Ni J
    J Hazard Mater; 2013 Apr; 250-251():379-86. PubMed ID: 23500417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of Cd
    Wu M; Lu L; Zhou T; Ma Y; Weng Z
    Environ Sci Pollut Res Int; 2022 Jun; 29(29):44794-44805. PubMed ID: 35138533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of supporting membrane on removal of cadmium by the hybrid liquid membrane process.
    Garmsiri M; Mortaheb HR; Amini MH
    Environ Technol; 2015; 36(1-4):366-76. PubMed ID: 25337970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Titanate-based adsorbents for radioactive ions entrapment from water.
    Yang D; Liu H; Zheng Z; Sarina S; Zhu H
    Nanoscale; 2013 Mar; 5(6):2232-42. PubMed ID: 23412572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silver oxide nanocrystals anchored on titanate nanotubes and nanofibers: promising candidates for entrapment of radioactive iodine anions.
    Yang D; Liu H; Liu L; Sarina S; Zheng Z; Zhu H
    Nanoscale; 2013 Nov; 5(22):11011-8. PubMed ID: 24068160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of cadmium(II) from aqueous solution by corn stalk graft copolymers.
    Zheng L; Dang Z; Zhu C; Yi X; Zhang H; Liu C
    Bioresour Technol; 2010 Aug; 101(15):5820-6. PubMed ID: 20335027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Apatite-forming ability of titanium compound nanotube thin films formed on a titanium metal plate in a simulated body fluid.
    Yada M; Inoue Y; Akihito G; Noda I; Torikai T; Watari T; Hotokebuchi T
    Colloids Surf B Biointerfaces; 2010 Oct; 80(2):116-24. PubMed ID: 20580538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of inorganic anions with iron-mineral adsorbents in aqueous media--a review.
    Kumar E; Bhatnagar A; Hogland W; Marques M; Sillanpää M
    Adv Colloid Interface Sci; 2014 Jan; 203():11-21. PubMed ID: 24246164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption removal of cadmium and copper from aqueous solution by areca: a food waste.
    Zheng W; Li XM; Wang F; Yang Q; Deng P; Zeng GM
    J Hazard Mater; 2008 Sep; 157(2-3):490-5. PubMed ID: 18313210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening of new sorbent materials for cadmium removal from aqueous solutions.
    Benaïssa H
    J Hazard Mater; 2006 May; 132(2-3):189-95. PubMed ID: 16307844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct removal of aqueous As(III) and As(V) by amorphous titanium dioxide nanotube arrays.
    Wu S; Hu W; Luo X; Deng F; Yu K; Luo S; Yang L; Tu X; Zeng G
    Environ Technol; 2013; 34(13-16):2285-90. PubMed ID: 24350483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluoride adsorption onto granular ferric hydroxide: effects of ionic strength, pH, surface loading, and major co-existing anions.
    Tang Y; Guan X; Wang J; Gao N; McPhail MR; Chusuei CC
    J Hazard Mater; 2009 Nov; 171(1-3):774-9. PubMed ID: 19616377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single, binary and multi-component adsorption of some anions and heavy metals on environmentally friendly Carpobrotus edulis plant.
    Chiban M; Soudani A; Sinan F; Persin M
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):267-76. PubMed ID: 20951008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of sodium content and calcination temperature on the morphology, structure and photocatalytic activity of nanotubular titanates.
    Lee CK; Wang CC; Lyu MD; Juang LC; Liu SS; Hung SH
    J Colloid Interface Sci; 2007 Dec; 316(2):562-9. PubMed ID: 17765912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.