BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 24617152)

  • 1. Nutrients and culture conditions requirements for the degradation of phenol by Rhodococcus UKMP-5M.
    Suhaila YN; Rosfarizan M; Ahmad SA; Abdul Latif I; Ariff AB
    J Environ Biol; 2013 May; 34(3):635-43. PubMed ID: 24617152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Characterization of phenol-degrading Rhodococcus sp. strain P1 from coking wastewater].
    Zhang Y; Meng X; Chai T
    Wei Sheng Wu Xue Bao; 2013 Oct; 53(10):1117-24. PubMed ID: 24409768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic cyanide degradation by cell-free extract of Rhodococcus UKMP-5M.
    Nallapan Maniyam M; Sjahrir F; Latif Ibrahim A; Cass AE
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(4):357-64. PubMed ID: 25723061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradation of Phenol by
    Wen Y; Li C; Song X; Yang Y
    Molecules; 2020 Aug; 25(16):. PubMed ID: 32806514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced cyanide biodegradation by immobilized crude extract of Rhodococcus UKMP-5M.
    Maniyam MN; Ibrahim AL; Cass AEG
    Environ Technol; 2019 Jan; 40(3):386-398. PubMed ID: 29032742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-temperature biodegradation of high amounts of phenol by Rhodococcus spp. and basidiomycetous yeasts.
    Margesin R; Fonteyne PA; Redl B
    Res Microbiol; 2005; 156(1):68-75. PubMed ID: 15636749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Phenol degradation by Rhodococcus opacus strain 1G].
    Shumkova ES; Solianikova IP; Plotnikova EG; Golovleva LA
    Prikl Biokhim Mikrobiol; 2009; 45(1):51-7. PubMed ID: 19235509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of pyridine by one Rhodococcus strain in the presence of chromium (VI) or phenol.
    Sun JQ; Xu L; Tang YQ; Chen FM; Liu WQ; Wu XL
    J Hazard Mater; 2011 Jul; 191(1-3):62-8. PubMed ID: 21592659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous Biodegradation of Phenol and n-Hexadecane by Cryogel Immobilized Biosurfactant Producing Strain Rhodococcus wratislawiensis BN38.
    Hristov AE; Christova NE; Kabaivanova LV; Nacheva LV; Stoineva IB; Petrov PD
    Pol J Microbiol; 2016 Aug; 65(3):287-293. PubMed ID: 29334073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation of cyanide by acetonitrile-induced cells of Rhodococcus sp. UKMP-5M.
    Nallapan Maniyam M; Sjahrir F; Ibrahim AL; Cass AE
    J Gen Appl Microbiol; 2013; 59(6):393-404. PubMed ID: 24492598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new Rhodococcus aetherivorans strain isolated from lubricant-contaminated soil as a prospective phenol-biodegrading agent.
    Nogina T; Fomina M; Dumanskaya T; Zelena L; Khomenko L; Mikhalovsky S; Podgorskyi V; Gadd GM
    Appl Microbiol Biotechnol; 2020 Apr; 104(8):3611-3625. PubMed ID: 32043191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Individual or synchronous biodegradation of di-n-butyl phthalate and phenol by Rhodococcus ruber strain DP-2.
    He Z; Niu C; Lu Z
    J Hazard Mater; 2014 May; 273():104-9. PubMed ID: 24727011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial metabolism of 2-chlorophenol, phenol and rho-cresol by Rhodococcus erythropolis M1 in co-culture with Pseudomonas fluorescens P1.
    Goswami M; Shivaraman N; Singh RP
    Microbiol Res; 2005; 160(2):101-9. PubMed ID: 15881826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradation of phenol by a highly tolerant strain Rhodococcus ruber C1: Biochemical characterization and comparative genome analysis.
    Zhao T; Gao Y; Yu T; Zhang Y; Zhang Z; Zhang L; Zhang L
    Ecotoxicol Environ Saf; 2021 Jan; 208():111709. PubMed ID: 33396040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of a static magnetic field on phenol degradation effectiveness and Rhodococcus erythropolis growth and respiration in a fed-batch reactor.
    Křiklavová L; Truhlář M; Škodováa P; Lederer T; Jirků V
    Bioresour Technol; 2014 Sep; 167():510-3. PubMed ID: 25013934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The isolation of microorganisms capable of phenol degradation.
    Przybulewska K; Wieczorek A; Nowak A; Pochrzaszcz M
    Pol J Microbiol; 2006; 55(1):63-7. PubMed ID: 16878606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction and carbon catabolite repression of phenol degradation genes in Rhodococcus erythropolis and Rhodococcus jostii.
    Szőköl J; Rucká L; Šimčíková M; Halada P; Nešvera J; Pátek M
    Appl Microbiol Biotechnol; 2014 Oct; 98(19):8267-79. PubMed ID: 24938209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation of phenol in synthetic and industrial wastewater by Rhodococcus erythropolis UPV-1 immobilized in an air-stirred reactor with clarifier.
    Prieto MB; Hidalgo A; Rodríguez-Fernández C; Serra JL; Llama MJ
    Appl Microbiol Biotechnol; 2002 May; 58(6):853-9. PubMed ID: 12021809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of 2,4,6-trinitrophenol by Rhodococcus sp. isolated from a picric acid-contaminated soil.
    Shen J; Zhang J; Zuo Y; Wang L; Sun X; Li J; Han W; He R
    J Hazard Mater; 2009 Apr; 163(2-3):1199-206. PubMed ID: 18762376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of phenol by Rhodococcus erythropolis UPV-1 immobilized on Biolite in a packed-bed reactor.
    Begoña Prieto M; Hidalgo A; Serra JL; Llama MJ
    J Biotechnol; 2002 Jul; 97(1):1-11. PubMed ID: 12052678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.