These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 24617208)

  • 1. [The research on high-density flexible microelectrode array of retinal prosthesis based on MEMS technology].
    Feng G; Sui X; Wang Y; Li G; Chai X
    Zhongguo Yi Liao Qi Xie Za Zhi; 2013 Nov; 37(6):407-10. PubMed ID: 24617208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The research progress on microelectrode array (MEA) of retinal prosthesis].
    Li T; Cao Z; Sui X; Jiang X; Ren Q; Chai X
    Zhongguo Yi Liao Qi Xie Za Zhi; 2010 Sep; 34(5):355-9. PubMed ID: 21179713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The research on multi-layer flexible microelectrode arrays of epiretinal prosthesis].
    Cao Z; Li T; Sui X; Li G; Ren Q; Chai X
    Zhongguo Yi Liao Qi Xie Za Zhi; 2010 Nov; 34(6):399-402. PubMed ID: 21360973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical Characterization of 3D Au Microelectrodes for Use in Retinal Prostheses.
    Lee S; Ahn JH; Seo JM; Chung H; Cho DI
    Sensors (Basel); 2015 Jun; 15(6):14345-55. PubMed ID: 26091397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implantable nanostructured MEA with biphasic current stimulator for retinal prostheses.
    Han S; Kim C; Kim K; Lee S
    Technol Health Care; 2023; 31(5):1981-1995. PubMed ID: 36872814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MEMS-based system and image processing strategy for epiretinal prosthesis.
    Xia P; Hu J; Qi J; Gu C; Peng Y
    Biomed Mater Eng; 2015; 26 Suppl 1():S1257-63. PubMed ID: 26405885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A high-density microelectrode-tissue-microelectrode sandwich platform for application of retinal circuit study.
    Yang F; Yang CH; Wang FM; Cheng YT; Teng CC; Lee LJ; Yang CH; Fan LS
    Biomed Eng Online; 2015 Nov; 14():109. PubMed ID: 26611649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible microelectrode array for retinal prosthesis.
    Bin Sun ; Tengyue Li ; Kai Xia ; Qi Zeng ; Tianzhun Wu ; Humayun MS
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1097-1100. PubMed ID: 29060066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Honeycomb-Patterned Graphene Microelectrodes: A Promising Approach for Safe and Effective Retinal Stimulation Based on Electro-Thermo-Mechanical Modeling and Simulation.
    Asghar SA; Mahadevappa M
    IEEE Trans Nanobioscience; 2024 Apr; 23(2):262-271. PubMed ID: 37747869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel in vitro sensing configuration for retinal physiology analysis of a sub-retinal prosthesis.
    Koo KI; Lee S; Yee JH; Ryu SB; Kim KH; Goo YS; Cho DI
    Sensors (Basel); 2012; 12(3):3131-44. PubMed ID: 22736997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of surface modification on microelectrode arrays for in vitro cell culture.
    Lin SP; Chen JJ; Liao JD; Tzeng SF
    Biomed Microdevices; 2008 Feb; 10(1):99-111. PubMed ID: 17674208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro biocompatibility of various polymer-based microelectrode arrays for retinal prosthesis.
    Bae SH; Che JH; Seo JM; Jeong J; Kim ET; Lee SW; Koo KI; Suaning GJ; Lovell NH; Cho DI; Kim SJ; Chung H
    Invest Ophthalmol Vis Sci; 2012 May; 53(6):2653-7. PubMed ID: 22427592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The research progress on flexible neural stimulating microelectrodes based on MEMS technology].
    Luo X; Sui X; Zhu Z
    Zhongguo Yi Liao Qi Xie Za Zhi; 2012 Jul; 36(4):272-6. PubMed ID: 23189643
    [No Abstract]   [Full Text] [Related]  

  • 14. Large improvement of the electrical impedance of imaging and high-intensity focused ultrasound (HIFU) phased arrays using multilayer piezoelectric ceramics coupled in lateral mode.
    Song J; Lucht B; Hynynen K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jul; 59(7):1584-95. PubMed ID: 22828853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micro-multi-probe electrode array to measure neural signals.
    Chen CH; Yao DJ; Tseng SH; Lu SW; Chiao CC; Yeh SR
    Biosens Bioelectron; 2009 Mar; 24(7):1911-7. PubMed ID: 19027284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The application of flexible neural microelectrode on retinal prosthesis].
    Hui C; Li B; Xu A; Xing Y; Li G; Zhao J; Ren Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Aug; 25(4):938-40. PubMed ID: 18788313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of electrically evoked cortical potential thresholds generated with subretinal or suprachoroidal placement of a microelectrode array in the rabbit.
    Yamauchi Y; Franco LM; Jackson DJ; Naber JF; Ziv RO; Rizzo JF; Kaplan HJ; Enzmann V
    J Neural Eng; 2005 Mar; 2(1):S48-56. PubMed ID: 15876654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical characteristics of 2D and 3D microelectrodes for high-resolution retinal prostheses.
    Lee S; Ahn J; Yoo H; Jung S; Oh S; Park S; Cho D
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3535-8. PubMed ID: 24110492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers.
    Lee SW; Seo JM; Ha S; Kim ET; Chung H; Kim SJ
    Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5859-66. PubMed ID: 19553608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel dual mode microelectrode array for neuroelectrical and neurochemical recording in vitro.
    Song Y; Lin N; Liu C; Jiang H; Xing G; Cai X
    Biosens Bioelectron; 2012; 38(1):416-20. PubMed ID: 22672764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.