BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 2461736)

  • 1. Intracellular mitochondrial membrane potential as an indicator of hepatocyte energy metabolism: further evidence for thermodynamic control of metabolism.
    Berry MN; Gregory RB; Grivell AR; Henly DC; Nobes CD; Phillips JW; Wallace PG
    Biochim Biophys Acta; 1988 Dec; 936(3):294-306. PubMed ID: 2461736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow-force relationships in mitochondrial oxidative phosphorylation.
    Woelders H; Putters J; van Dam K
    FEBS Lett; 1986 Aug; 204(1):17-21. PubMed ID: 3743759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unique relationships between the rates of oxidation and phosphorylation and the protonmotive force in rat-liver mitochondria.
    Woelders H; van der Velden T; van Dam K
    Biochim Biophys Acta; 1988 Jun; 934(1):123-34. PubMed ID: 2837288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the mitochondrial protonmotive force in isolated hepatocytes.
    Hoek JB; Nicholls DG; Williamson JR
    J Biol Chem; 1980 Feb; 255(4):1458-64. PubMed ID: 7354039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-ohmic proton conductance of the mitochondrial inner membrane in hepatocytes.
    Nobes CD; Brown GC; Olive PN; Brand MD
    J Biol Chem; 1990 Aug; 265(22):12903-9. PubMed ID: 2376579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular acidosis protects cultured hepatocytes from the toxic consequences of a loss of mitochondrial energization.
    Masaki N; Thomas AP; Hoek JB; Farber JL
    Arch Biochem Biophys; 1989 Jul; 272(1):152-61. PubMed ID: 2735760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Operation and energy dependence of the reducing-equivalent shuttles during lactate metabolism by isolated hepatocytes.
    Berry MN; Phillips JW; Gregory RB; Grivell AR; Wallace PG
    Biochim Biophys Acta; 1992 Sep; 1136(3):223-30. PubMed ID: 1520699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a rapid cellular-fractionation technique for hepatocytes. Application in the measurement of mitochondrial membrane potential in situ.
    Shears SB; Kirk CJ
    Biochem J; 1984 Apr; 219(2):375-82. PubMed ID: 6743225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of the membrane potential upon the Ca(2+)- and cumene hydroperoxide-induced permeabilization of the inner mitochondrial membrane.
    Novgorodov SA; Gudz TI; Kushnareva YE; Eriksson O; Leikin YN
    FEBS Lett; 1991 Dec; 295(1-3):77-80. PubMed ID: 1722466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of carboxyatractylate on transmembrane electrical potential of plant mitochondria in different metabolic states.
    Macri F; Vianello A; Petrussa E; Mokhova E
    Biochem Mol Biol Int; 1994 Sep; 34(2):217-24. PubMed ID: 7849631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of cadmium on membrane potential in isolated rat hepatocytes.
    Martel J; Marion M; Denizeau F
    Toxicology; 1990; 60(1-2):161-72. PubMed ID: 2315939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the mitochondrial membrane permeability transition (MPT) in rotenone-induced apoptosis in liver cells.
    Isenberg JS; Klaunig JE
    Toxicol Sci; 2000 Feb; 53(2):340-51. PubMed ID: 10696782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane potential and surface potential in mitochondria: uptake and binding of lipophilic cations.
    Rottenberg H
    J Membr Biol; 1984; 81(2):127-38. PubMed ID: 6492133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism of stimulation of respiration by fatty acids in isolated hepatocytes.
    Nobes CD; Hay WW; Brand MD
    J Biol Chem; 1990 Aug; 265(22):12910-5. PubMed ID: 2376580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors that determine the plasma-membrane potential in bloodstream forms of Trypanosoma brucei.
    Nolan DP; Voorheis HP
    Eur J Biochem; 2000 Aug; 267(15):4615-23. PubMed ID: 10903493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the plasma and mitochondrial membrane potentials of alveolar type II cells by the use of ionic probes.
    Gallo RL; Finkelstein JN; Notter RH
    Biochim Biophys Acta; 1984 Apr; 771(2):217-27. PubMed ID: 6704396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mitochondrion in bloodstream forms of Trypanosoma brucei is energized by the electrogenic pumping of protons catalysed by the F1F0-ATPase.
    Nolan DP; Voorheis HP
    Eur J Biochem; 1992 Oct; 209(1):207-16. PubMed ID: 1327770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial transmembrane potential and pH gradient during anoxia.
    Andersson BS; Aw TY; Jones DP
    Am J Physiol; 1987 Apr; 252(4 Pt 1):C349-55. PubMed ID: 3565555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of cellular energy status in tocopheryl hemisuccinate cytoprotection against ethyl methanesulfonate-induced toxicity.
    Ray SD; Fariss MW
    Arch Biochem Biophys; 1994 May; 311(1):180-90. PubMed ID: 8185315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors determining the plasma-membrane potential of lymphocytes.
    Felber SM; Brand MD
    Biochem J; 1982 May; 204(2):577-85. PubMed ID: 6288022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.