These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 2461747)
1. Mechanism of erythrocyte aggregate formation in presence of magnetic field and dextrans as analyzed by laser light scattering. Singh M; Muralidharan E Biorheology; 1988; 25(1-2):237-44. PubMed ID: 2461747 [TBL] [Abstract][Full Text] [Related]
2. Analysis of erythrocyte aggregation mechanism in presence of dextran and magnetic field by ultrasound scattering in blood. Swarnamani S; Singh M Biorheology; 1989; 26(4):847-62. PubMed ID: 2482091 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous influence of erythrocyte deformability and macromolecules in the medium on erythrocyte aggregation: a kinetic study by a laser scattering technique. Muralidharan E; Tateishi N; Maeda N Biochim Biophys Acta; 1994 Sep; 1194(2):255-63. PubMed ID: 7522564 [TBL] [Abstract][Full Text] [Related]
4. Erythrocytes sedimentation profiles under gravitational field as determined by He-Ne laser. VII. Influence of dextrans, albumin and saline on cellular aggregation and sedimentation rate. Singh M; Joseph KP Biorheology; 1987; 24(1):53-61. PubMed ID: 2443200 [TBL] [Abstract][Full Text] [Related]
5. Assessment of red blood cell aggregation with dextran by ultrasonic interferometry. Razavian SM; Guillemin MT; Guillet R; Beuzard Y; Boynard M Biorheology; 1991; 28(1-2):89-97. PubMed ID: 1710940 [TBL] [Abstract][Full Text] [Related]
6. A new laser photometric technique for the measurement of erythrocyte aggregation and sedimentation kinetics. Muralidharan E; Tateishi N; Maeda N Biorheology; 1994; 31(3):277-85. PubMed ID: 8729487 [TBL] [Abstract][Full Text] [Related]
7. Size determination of red blood cell aggregates induced by dextran using ultrasound backscattering phenomenon. Boynard M; Lelievre JC Biorheology; 1990; 27(1):39-46. PubMed ID: 1694460 [TBL] [Abstract][Full Text] [Related]
8. Alteration of Blood Flow in a Venular Network by Infusion of Dextran 500: Evaluation with a Laser Speckle Contrast Imaging System. Namgung B; Ng YC; Nam J; Leo HL; Kim S PLoS One; 2015; 10(10):e0140038. PubMed ID: 26466371 [TBL] [Abstract][Full Text] [Related]
9. Rheology of erythrocyte suspensions: dextran-mediated aggregation of deformable and nondeformable erythrocytes. Knox RJ; Nordt FJ; Seaman GV; Brooks DE Biorheology; 1977; 14(2-3):75-84. PubMed ID: 562200 [No Abstract] [Full Text] [Related]
10. Fahraeus effect and cell screening during tube flow of human blood. II. Effect of dextran-induced cell aggregation. Gaehtgens P; Kreutz F; Albrecht KH Biorheology; 1978; 15(3-4):155-61. PubMed ID: 737318 [No Abstract] [Full Text] [Related]
11. Effect of dextran-induced changes in refractive index and aggregation on optical properties of whole blood. Xu X; Wang RK; Elder JB; Tuchin VV Phys Med Biol; 2003 May; 48(9):1205-21. PubMed ID: 12765332 [TBL] [Abstract][Full Text] [Related]
12. Comparison of the effects of infusion with hydroxyethyl starch and low molecular weight dextran on cerebral blood flow and hemorheology in normal baboons. Tsuda Y; Hartmann A; Weiand J; Solymosi L J Neurol Sci; 1987 Dec; 82(1-3):171-80. PubMed ID: 2450177 [TBL] [Abstract][Full Text] [Related]
13. Comparison of new ultrasound index with laser reference and viscosity indexes for erythrocyte aggregation quantification. Rouffiac V; Peronneau P; Guglielmi JP; Del-Pino M; Lassau N; Levenson J Ultrasound Med Biol; 2003 Jun; 29(6):789-99. PubMed ID: 12837495 [TBL] [Abstract][Full Text] [Related]
14. The effect of low-molecular weight dextran on erythrocyte aggregation in normal and preeclamptic pregnancy. Pribush A; Mankuta D; Meiselman HJ; Meyerstein D; Silberstein T; Katz M; Meyerstein N Clin Hemorheol Microcirc; 2000; 22(2):143-52. PubMed ID: 10831064 [TBL] [Abstract][Full Text] [Related]
15. Aggregate formation of erythrocytes in postcapillary venules. Kim S; Popel AS; Intaglietta M; Johnson PC Am J Physiol Heart Circ Physiol; 2005 Feb; 288(2):H584-90. PubMed ID: 15458951 [TBL] [Abstract][Full Text] [Related]
16. The mechanism of erythrocyte sedimentation. Part 1: Channeling in sedimenting blood. Pribush A; Meyerstein D; Meyerstein N Colloids Surf B Biointerfaces; 2010 Jan; 75(1):214-23. PubMed ID: 19766465 [TBL] [Abstract][Full Text] [Related]
17. Interaction of polysaccharides with plasma membranes--I. Interaction of human erythrocytes with degraded iota carrageenans and the effect of dextran and deae dextran. Pittz EP; Jones R; Goldberg L; Coulston F Biorheology; 1977; 14(1):21-31. PubMed ID: 857958 [No Abstract] [Full Text] [Related]
18. Standard aggregating media to test the "aggregability" of rat red blood cells. Başkurt OK; Bor-Küçükatay M; Yalçin O; Meiselman HJ; Armstrong JK Clin Hemorheol Microcirc; 2000; 22(2):161-6. PubMed ID: 10831066 [TBL] [Abstract][Full Text] [Related]
19. The mechanism of the dextran-induced red blood cell aggregation. Pribush A; Zilberman-Kravits D; Meyerstein N Eur Biophys J; 2007 Feb; 36(2):85-94. PubMed ID: 17091267 [TBL] [Abstract][Full Text] [Related]
20. Erythrocyte aggregation tendency and cellular properties in horse, human, and rat: a comparative study. Baskurt OK; Farley RA; Meiselman HJ Am J Physiol; 1997 Dec; 273(6):H2604-12. PubMed ID: 9435593 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]