BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 24617596)

  • 1. Unexpected hydrolytic instability of N-acylated amino acid amides and peptides.
    Samaritoni JG; Copes AT; Crews DK; Glos C; Thompson AL; Wilson C; O'Donnell MJ; Scott WL
    J Org Chem; 2014 Apr; 79(7):3140-51. PubMed ID: 24617596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amine Activation: "Inverse" Dipeptide Synthesis and Amide Function Formation through Activated Amino Compounds.
    Tosi E; Campagne JM; de Figueiredo RM
    J Org Chem; 2022 Sep; 87(18):12148-12163. PubMed ID: 36069394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thio acid/azide amidation: an improved route to N-acyl sulfonamides.
    Barlett KN; Kolakowski RV; Katukojvala S; Williams LJ
    Org Lett; 2006 Mar; 8(5):823-6. PubMed ID: 16494450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature dependence of C-terminal carboxylic group IR absorptions in the amide I' region.
    Anderson BA; Literati A; Ball B; Kubelka J
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 134():473-83. PubMed ID: 25036456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-pot mechanosynthesis of aromatic amides and dipeptides from carboxylic acids and amines.
    Štrukil V; Bartolec B; Portada T; Đilović I; Halasz I; Margetić D
    Chem Commun (Camb); 2012 Dec; 48(99):12100-2. PubMed ID: 23135220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient amidation from carboxylic acids and azides via selenocarboxylates: application to the coupling of amino acids and peptides with azides.
    Wu X; Hu L
    J Org Chem; 2007 Feb; 72(3):765-74. PubMed ID: 17253793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel approach for the solid-phase synthesis of substituted cyclic guanidines, their respective bis analogues, and N-acylated guanidines from N-acylated amino acid amides.
    Acharya AN; Ostresh JM; Houghten RA
    J Comb Chem; 2001; 3(6):578-89. PubMed ID: 11703155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of carboxyl group with cyanate: peptide bond formation from dicarboxylic acids.
    Danger G; Charlot S; Boiteau L; Pascal R
    Amino Acids; 2012 Jun; 42(6):2331-41. PubMed ID: 21769498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic studies of amide bond scission during acidolytic deprotection of Pip containing peptide.
    Rubini C; Osler A; Calderan A; Guiotto A; Ruzza P
    J Pept Sci; 2008 Aug; 14(8):989-97. PubMed ID: 18407579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linear and cyclic aliphatic carboxamides of the Murchison meteorite: hydrolyzable derivatives of amino acids and other carboxylic acids.
    Cooper GW; Cronin JR
    Geochim Cosmochim Acta; 1995 Mar; 59(5):1003-15. PubMed ID: 11540047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic Strategies for the Biosynthesis of N-Acyl Amino Acid Amides.
    Kua GKB; Nguyen GKT; Li Z
    Chembiochem; 2024 Feb; 25(4):e202300672. PubMed ID: 38051126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactions of an aromatic σ,σ-biradical with amino acids and dipeptides in the gas phase.
    Fu M; Li S; Archibold E; Yurkovich MJ; Nash JJ; Kenttämaa HI
    J Am Soc Mass Spectrom; 2010 Oct; 21(10):1737-52. PubMed ID: 20705478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploiting an inherent neighboring group effect of alpha-amino acids to synthesize extremely hindered dipeptides.
    Brown ZZ; Schafmeister CE
    J Am Chem Soc; 2008 Nov; 130(44):14382-3. PubMed ID: 18841897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of isokinetic ratios necessary for equimolar incorporation of carboxylic acids in the solid-phase synthesis of mixture-based combinatorial libraries.
    Acharya AN; Ostresh JM; Houghten RA
    Biopolymers; 2002 Oct; 65(1):32-9. PubMed ID: 12209470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. C-terminal N-alkylated peptide amides resulting from the linker decomposition of the Rink amide resin: a new cleavage mixture prevents their formation.
    Stathopoulos P; Papas S; Tsikaris V
    J Pept Sci; 2006 Mar; 12(3):227-32. PubMed ID: 16103992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective cleavage of polypeptides with trifluoroacetic acid: applications for microsequencing.
    Hulmes JD; Pan YC
    Anal Biochem; 1991 Sep; 197(2):368-76. PubMed ID: 1838463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of optically active amino acid derivatives via dynamic kinetic resolution.
    Choi YK; Kim Y; Han K; Park J; Kim MJ
    J Org Chem; 2009 Dec; 74(24):9543-5. PubMed ID: 19919029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel N-terminal degradation reaction of peptides via N-amidination.
    Hamada Y
    Bioorg Med Chem Lett; 2016 Apr; 26(7):1690-5. PubMed ID: 26916439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH-Dependent peptide bond formation by the selective coupling of α-amino acids in water.
    Wu LF; Liu Z; Sutherland JD
    Chem Commun (Camb); 2021 Jan; 57(1):73-76. PubMed ID: 33242043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unusual truncation of N-acylated peptoids under acidic conditions.
    Kim S; Biswas G; Park S; Kim A; Park H; Park E; Kim J; Kwon YU
    Org Biomol Chem; 2014 Jul; 12(28):5222-6. PubMed ID: 24918101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.