BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 24617794)

  • 1. Dual-phase, surface tension-based fabrication method for generation of tumor millibeads.
    Pradhan S; Chaudhury CS; Lipke EA
    Langmuir; 2014 Apr; 30(13):3817-25. PubMed ID: 24617794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres.
    Pradhan S; Clary JM; Seliktar D; Lipke EA
    Biomaterials; 2017 Jan; 115():141-154. PubMed ID: 27889665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of perfusable 3D hepatic lobule-like constructs through assembly of multiple cell type laden hydrogel microstructures.
    Cui J; Wang H; Zheng Z; Shi Q; Sun T; Huang Q; Fukuda T
    Biofabrication; 2018 Dec; 11(1):015016. PubMed ID: 30523847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of Uniform 3D Microtumors in Hydrogel Microwell Arrays for Measurement of Viability, Morphology, and Signaling Pathway Activation.
    Singh M; Close DA; Mukundan S; Johnston PA; Sant S
    Assay Drug Dev Technol; 2015 Nov; 13(9):570-83. PubMed ID: 26274587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repair of osteochondral defects with rehydrated freeze-dried oligo[poly(ethylene glycol) fumarate] hydrogels seeded with bone marrow mesenchymal stem cells in a porcine model.
    Lim CT; Ren X; Afizah MH; Tarigan-Panjaitan S; Yang Z; Wu Y; Chian KS; Mikos AG; Hui JH
    Tissue Eng Part A; 2013 Aug; 19(15-16):1852-61. PubMed ID: 23517496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of porous PEG hydrogels that enable efficient, uniform cell-seeding and permit early neural process extension.
    Namba RM; Cole AA; Bjugstad KB; Mahoney MJ
    Acta Biomater; 2009 Jul; 5(6):1884-97. PubMed ID: 19250891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel bioprinting method and system for forming hybrid tissue engineering constructs.
    Shanjani Y; Pan CC; Elomaa L; Yang Y
    Biofabrication; 2015 Dec; 7(4):045008. PubMed ID: 26685102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of micropatterned hydrogels for neural culture systems using dynamic mask projection photolithography.
    Curley JL; Jennings SR; Moore MJ
    J Vis Exp; 2011 Feb; (48):. PubMed ID: 21372777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds.
    Arcaute K; Mann B; Wicker R
    Acta Biomater; 2010 Mar; 6(3):1047-54. PubMed ID: 19683602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Droplet Microfluidics-Based Fabrication of Monodisperse Poly(ethylene glycol)-Fibrinogen Breast Cancer Microspheres for Automated Drug Screening Applications.
    Seeto WJ; Tian Y; Pradhan S; Minond D; Lipke EA
    ACS Biomater Sci Eng; 2022 Sep; 8(9):3831-3841. PubMed ID: 35969206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Foamed oligo(poly(ethylene glycol)fumarate) hydrogels as versatile prefabricated scaffolds for tissue engineering.
    Henke M; Baumer J; Blunk T; Tessmar J
    J Tissue Eng Regen Med; 2014 Mar; 8(3):248-52. PubMed ID: 22718564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function.
    Subramani K; Birch MA
    Biomed Mater; 2006 Sep; 1(3):144-54. PubMed ID: 18458396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capillary Origami Inspired Fabrication of Complex 3D Hydrogel Constructs.
    Li M; Yang Q; Liu H; Qiu M; Lu TJ; Xu F
    Small; 2016 Sep; 12(33):4492-500. PubMed ID: 27418038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multilayer microfluidic PEGDA hydrogels.
    Cuchiara MP; Allen AC; Chen TM; Miller JS; West JL
    Biomaterials; 2010 Jul; 31(21):5491-7. PubMed ID: 20447685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical study of the edge outgrowth phenomenon of encapsulated chondrocytic isogenous groups in the surface layer of hydrogel scaffolds for cartilage tissue engineering.
    Ng SS; Su K; Li C; Chan-Park MB; Wang DA; Chan V
    Acta Biomater; 2012 Jan; 8(1):244-52. PubMed ID: 21906699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water-soluble photopolymerizable chitosan hydrogels for biofabrication via two-photon polymerization.
    Kufelt O; El-Tamer A; Sehring C; Meißner M; Schlie-Wolter S; Chichkov BN
    Acta Biomater; 2015 May; 18():186-95. PubMed ID: 25749294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of tubular tissue constructs by centrifugal casting of cells suspended in an in situ crosslinkable hyaluronan-gelatin hydrogel.
    Mironov V; Kasyanov V; Zheng Shu X; Eisenberg C; Eisenberg L; Gonda S; Trusk T; Markwald RR; Prestwich GD
    Biomaterials; 2005 Dec; 26(36):7628-35. PubMed ID: 16023201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microengineered PEG hydrogels: 3D scaffolds for guided cell growth.
    Schulte VA; Alves DF; Dalton PP; Moeller M; Lensen MC; Mela P
    Macromol Biosci; 2013 May; 13(5):562-72. PubMed ID: 23420664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogels and microtechnologies for engineering the cellular microenvironment.
    Gauvin R; Parenteau-Bareil R; Dokmeci MR; Merryman WD; Khademhosseini A
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2012; 4(3):235-46. PubMed ID: 22144036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogels based on dual curable chitosan-graft-polyethylene glycol-graft-methacrylate: application to layer-by-layer cell encapsulation.
    Poon YF; Cao Y; Liu Y; Chan V; Chan-Park MB
    ACS Appl Mater Interfaces; 2010 Jul; 2(7):2012-25. PubMed ID: 20568698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.