These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 24617993)
1. Muscadine grape skin extract reverts snail-mediated epithelial mesenchymal transition via superoxide species in human prostate cancer cells. Burton LJ; Barnett P; Smith B; Arnold RS; Hudson T; Kundu K; Murthy N; Odero-Marah VA BMC Complement Altern Med; 2014 Mar; 14():97. PubMed ID: 24617993 [TBL] [Abstract][Full Text] [Related]
2. Muscadine grape skin extract can antagonize Snail-cathepsin L-mediated invasion, migration and osteoclastogenesis in prostate and breast cancer cells. Burton LJ; Smith BA; Smith BN; Loyd Q; Nagappan P; McKeithen D; Wilder CL; Platt MO; Hudson T; Odero-Marah VA Carcinogenesis; 2015 Sep; 36(9):1019-27. PubMed ID: 26069256 [TBL] [Abstract][Full Text] [Related]
3. Val16A SOD2 Polymorphism Promotes Epithelial-Mesenchymal Transition Antagonized by Muscadine Grape Skin Extract in Prostate Cancer Cells. Sweeney JD; Debeljak M; Riel S; Millena AC; Eshleman JR; Paller CJ; Odero-Marah V Antioxidants (Basel); 2021 Feb; 10(2):. PubMed ID: 33535682 [TBL] [Abstract][Full Text] [Related]
4. Snail-mediated regulation of reactive oxygen species in ARCaP human prostate cancer cells. Barnett P; Arnold RS; Mezencev R; Chung LW; Zayzafoon M; Odero-Marah V Biochem Biophys Res Commun; 2011 Jan; 404(1):34-9. PubMed ID: 21093414 [TBL] [Abstract][Full Text] [Related]
5. CCAAT-displacement protein/cut homeobox transcription factor (CUX1) represses estrogen receptor-alpha (ER-α) in triple-negative breast cancer cells and can be antagonized by muscadine grape skin extract (MSKE). Burton LJ; Hawsawi O; Sweeney J; Bowen N; Hudson T; Odero-Marah V PLoS One; 2019; 14(4):e0214844. PubMed ID: 30964885 [TBL] [Abstract][Full Text] [Related]
6. Targeting the Nuclear Cathepsin L CCAAT Displacement Protein/Cut Homeobox Transcription Factor-Epithelial Mesenchymal Transition Pathway in Prostate and Breast Cancer Cells with the Z-FY-CHO Inhibitor. Burton LJ; Dougan J; Jones J; Smith BN; Randle D; Henderson V; Odero-Marah VA Mol Cell Biol; 2017 Mar; 37(5):. PubMed ID: 27956696 [TBL] [Abstract][Full Text] [Related]
7. Muscadine Grape Skin Extract Induces an Unfolded Protein Response-Mediated Autophagy in Prostate Cancer Cells: A TMT-Based Quantitative Proteomic Analysis. Burton LJ; Rivera M; Hawsawi O; Zou J; Hudson T; Wang G; Zhang Q; Cubano L; Boukli N; Odero-Marah V PLoS One; 2016; 11(10):e0164115. PubMed ID: 27755556 [TBL] [Abstract][Full Text] [Related]
8. The phytoalexin camalexin mediates cytotoxicity towards aggressive prostate cancer cells via reactive oxygen species. Smith BA; Neal CL; Chetram M; Vo B; Mezencev R; Hinton C; Odero-Marah VA J Nat Med; 2013 Jul; 67(3):607-18. PubMed ID: 23179315 [TBL] [Abstract][Full Text] [Related]
9. Receptor activator of NF-kappaB Ligand (RANKL) expression is associated with epithelial to mesenchymal transition in human prostate cancer cells. Odero-Marah VA; Wang R; Chu G; Zayzafoon M; Xu J; Shi C; Marshall FF; Zhau HE; Chung LW Cell Res; 2008 Aug; 18(8):858-70. PubMed ID: 18645583 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of prostate cancer growth by muscadine grape skin extract and resveratrol through distinct mechanisms. Hudson TS; Hartle DK; Hursting SD; Nunez NP; Wang TT; Young HA; Arany P; Green JE Cancer Res; 2007 Sep; 67(17):8396-405. PubMed ID: 17804756 [TBL] [Abstract][Full Text] [Related]
11. Snail negatively regulates cell adhesion to extracellular matrix and integrin expression via the MAPK pathway in prostate cancer cells. Neal CL; Mckeithen D; Odero-Marah VA Cell Adh Migr; 2011; 5(3):249-57. PubMed ID: 21478672 [TBL] [Abstract][Full Text] [Related]
12. Resveratrol suppresses epithelial-to-mesenchymal transition in colorectal cancer through TGF-β1/Smads signaling pathway mediated Snail/E-cadherin expression. Ji Q; Liu X; Han Z; Zhou L; Sui H; Yan L; Jiang H; Ren J; Cai J; Li Q BMC Cancer; 2015 Mar; 15():97. PubMed ID: 25884904 [TBL] [Abstract][Full Text] [Related]
13. Snail transcription factor regulates neuroendocrine differentiation in LNCaP prostate cancer cells. McKeithen D; Graham T; Chung LW; Odero-Marah V Prostate; 2010 Jun; 70(9):982-92. PubMed ID: 20166136 [TBL] [Abstract][Full Text] [Related]
14. Induction of reactive oxygen species generation inhibits epithelial-mesenchymal transition and promotes growth arrest in prostate cancer cells. Das TP; Suman S; Damodaran C Mol Carcinog; 2014 Jul; 53(7):537-47. PubMed ID: 23475579 [TBL] [Abstract][Full Text] [Related]
15. Stabilization of Snail through AKT/GSK-3β signaling pathway is required for TNF-α-induced epithelial-mesenchymal transition in prostate cancer PC3 cells. Wang H; Fang R; Wang XF; Zhang F; Chen DY; Zhou B; Wang HS; Cai SH; Du J Eur J Pharmacol; 2013 Aug; 714(1-3):48-55. PubMed ID: 23769744 [TBL] [Abstract][Full Text] [Related]
16. The role of Snail in prostate cancer. Smith BN; Odero-Marah VA Cell Adh Migr; 2012; 6(5):433-41. PubMed ID: 23076049 [TBL] [Abstract][Full Text] [Related]
17. Targeting the SPOCK1-snail/slug axis-mediated epithelial-to-mesenchymal transition by apigenin contributes to repression of prostate cancer metastasis. Chien MH; Lin YW; Wen YC; Yang YC; Hsiao M; Chang JL; Huang HC; Lee WJ J Exp Clin Cancer Res; 2019 Jun; 38(1):246. PubMed ID: 31182131 [TBL] [Abstract][Full Text] [Related]
18. AKT/GSK-3β regulates stability and transcription of snail which is crucial for bFGF-induced epithelial-mesenchymal transition of prostate cancer cells. Liu ZC; Wang HS; Zhang G; Liu H; Chen XH; Zhang F; Chen DY; Cai SH; Du J Biochim Biophys Acta; 2014 Oct; 1840(10):3096-105. PubMed ID: 25088797 [TBL] [Abstract][Full Text] [Related]
19. Snail transcription factor negatively regulates maspin tumor suppressor in human prostate cancer cells. Neal CL; Henderson V; Smith BN; McKeithen D; Graham T; Vo BT; Odero-Marah VA BMC Cancer; 2012 Aug; 12():336. PubMed ID: 22857708 [TBL] [Abstract][Full Text] [Related]
20. Snail promotes cell migration through PI3K/AKT-dependent Rac1 activation as well as PI3K/AKT-independent pathways during prostate cancer progression. Henderson V; Smith B; Burton LJ; Randle D; Morris M; Odero-Marah VA Cell Adh Migr; 2015; 9(4):255-64. PubMed ID: 26207671 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]