BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 24618527)

  • 1. Enhancement of convective drying by application of airborne ultrasound - a response surface approach.
    Beck SM; Sabarez H; Gaukel V; Knoerzer K
    Ultrason Sonochem; 2014 Nov; 21(6):2144-50. PubMed ID: 24618527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound as pretreatment to convective drying of Andean blackberry (Rubus glaucus Benth).
    Romero J CA; Yépez V BD
    Ultrason Sonochem; 2015 Jan; 22():205-10. PubMed ID: 25023827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of high power airborne ultrasound and microwaves on convective drying effectiveness and quality of green pepper.
    Szadzińska J; Łechtańska J; Kowalski SJ; Stasiak M
    Ultrason Sonochem; 2017 Jan; 34():531-539. PubMed ID: 27773279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of airborne ultrasound in the convective drying of fruits and vegetables: A review.
    Fan K; Zhang M; Mujumdar AS
    Ultrason Sonochem; 2017 Nov; 39():47-57. PubMed ID: 28732971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison between airborne ultrasound and contact ultrasound to intensify air drying of blackberry: Heat and mass transfer simulation, energy consumption and quality evaluation.
    Tao Y; Li D; Siong Chai W; Show PL; Yang X; Manickam S; Xie G; Han Y
    Ultrason Sonochem; 2021 Apr; 72():105410. PubMed ID: 33341708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of water transport mechanisms during potato drying by applying ultrasound.
    Ozuna C; Cárcel JA; García-Pérez JV; Mulet A
    J Sci Food Agric; 2011 Nov; 91(14):2511-7. PubMed ID: 21445872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Ultrasound Assistance on Dehydration Processes and Bioactive Component Retention of Osmo-Dried Sour Cherries.
    Siucińska K; Mieszczakowska-Frąc M; Połubok A; Konopacka D
    J Food Sci; 2016 Jul; 81(7):C1654-61. PubMed ID: 27299365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of mass transfer by ultrasound: Application to adsorbent regeneration and food drying/dehydration.
    Yao Y
    Ultrason Sonochem; 2016 Jul; 31():512-31. PubMed ID: 26964979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of drying by convective air dryer or power ultrasound on the vitamin C and β-carotene content of carrots.
    Frias J; Peñas E; Ullate M; Vidal-Valverde C
    J Agric Food Chem; 2010 Oct; 58(19):10539-44. PubMed ID: 20843024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasound-assisted intensification of a hybrid intermittent microwave - hot air drying process of potato: Quality aspects and energy consumption.
    Dehghannya J; Kadkhodaei S; Heshmati MK; Ghanbarzadeh B
    Ultrasonics; 2019 Jul; 96():104-122. PubMed ID: 30827686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasonic drying of foodstuff in a fluidized bed: Parametric study.
    García-Pérez JV; Cárcel JA; de la Fuente-Blanco S; Riera-Franco de Sarabia E
    Ultrasonics; 2006 Dec; 44 Suppl 1():e539-43. PubMed ID: 16889809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quality of plant-based food materials and its prediction during intermittent drying.
    Duc Pham N; Khan MIH; Joardder MUH; Rahman MM; Mahiuddin M; Abesinghe AMN; Karim MA
    Crit Rev Food Sci Nutr; 2019; 59(8):1197-1211. PubMed ID: 29190115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microwave-convective drying of food materials: A critical review.
    Kumar C; Karim MA
    Crit Rev Food Sci Nutr; 2019; 59(3):379-394. PubMed ID: 28872886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Food drying process by power ultrasound.
    de la Fuente-Blanco S; Riera-Franco de Sarabia E; Acosta-Aparicio VM; Blanco-Blanco A; Gallego-Juárez JA
    Ultrasonics; 2006 Dec; 44 Suppl 1():e523-7. PubMed ID: 16814827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apparatus and method for investigation of energy consumption of microwave assisted drying systems.
    Göllei A; Vass A; Magyar A; Pallai E
    Rev Sci Instrum; 2009 Oct; 80(10):104706. PubMed ID: 19895084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation on the air-borne ultrasound-assisted hot air convection thin-layer drying performance of municipal sewage sludge.
    Sun GY; Chen MQ; Huang YW
    Ultrason Sonochem; 2017 Jan; 34():588-599. PubMed ID: 27773284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining ethanol pre-treatment and ultrasound-assisted drying to enhance apple chips by fortification with black carrot anthocyanin.
    Rojas ML; Augusto PED; Cárcel JA
    J Sci Food Agric; 2021 Mar; 101(5):2078-2089. PubMed ID: 32974925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of mooseer (A. hirtifolium Boiss.) dehydration under infrared conditions.
    Chayjan RA; Fealekari M
    Acta Sci Pol Technol Aliment; 2017; 16(2):157-170. PubMed ID: 28703956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fully coupled multiphase model for infrared-convective drying of sweet potato.
    Onwude DI; Hashim N; Chen G; Putranto A; Udoenoh NR
    J Sci Food Agric; 2021 Jan; 101(2):398-413. PubMed ID: 32627847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving Malaysian cocoa quality through the use of dehumidified air under mild drying conditions.
    Hii CL; Law CL; Cloke M; Sharif S
    J Sci Food Agric; 2011 Jan; 91(2):239-46. PubMed ID: 20872824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.