BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 24618800)

  • 1. Preoperative imaging to predict intraoperative changes in tumor-to-corticospinal tract distance: an analysis of 45 cases using high-field intraoperative magnetic resonance imaging.
    Shahar T; Rozovski U; Marko NF; Tummala S; Ziu M; Weinberg JS; Rao G; Kumar VA; Sawaya R; Prabhu SS
    Neurosurgery; 2014 Jul; 75(1):23-30. PubMed ID: 24618800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pre- and intraoperative tractographic evaluation of corticospinal tract shift.
    Romano A; D'Andrea G; Calabria LF; Coppola V; Espagnet CR; Pierallini A; Ferrante L; Fantozzi L; Bozzao A
    Neurosurgery; 2011 Sep; 69(3):696-704; discussion 704-5. PubMed ID: 21471830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Multi-modality Monitoring Using Direct Electrical Stimulation to Determine Corticospinal Tract Shift and Integrity in Tumors using the Intraoperative MRI.
    Krivosheya D; Rao G; Tummala S; Kumar V; Suki D; Bastos DCA; Prabhu SS
    J Neurol Surg A Cent Eur Neurosurg; 2021 Jul; 82(4):375-380. PubMed ID: 31659724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intraoperative mapping and monitoring of the corticospinal tracts with neurophysiological assessment and 3-dimensional ultrasonography-based navigation. Clinical article.
    Nossek E; Korn A; Shahar T; Kanner AA; Yaffe H; Marcovici D; Ben-Harosh C; Ben Ami H; Weinstein M; Shapira-Lichter I; Constantini S; Hendler T; Ram Z
    J Neurosurg; 2011 Mar; 114(3):738-46. PubMed ID: 20799862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maximal Resection of Gliomas Adjacent to the Corticospinal Tract Using 3-T Intraoperative Magnetic Resonance Imaging.
    Hanihara M; Kawataki T; Kazama H; Ogiwara M; Yoshioka H; Kinouchi H
    World Neurosurg; 2024 May; 185():e1207-e1215. PubMed ID: 38519017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is intraoperative diffusion tensor imaging at 3.0T comparable to subcortical corticospinal tract mapping?
    Ostrý S; Belšan T; Otáhal J; Beneš V; Netuka D
    Neurosurgery; 2013 Nov; 73(5):797-807; discussion 806-7. PubMed ID: 23863765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intraoperative tractography and motor evoked potential (MEP) monitoring in surgery for gliomas around the corticospinal tract.
    Maesawa S; Fujii M; Nakahara N; Watanabe T; Wakabayashi T; Yoshida J
    World Neurosurg; 2010 Jul; 74(1):153-61. PubMed ID: 21300007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intraoperative subcortical motor evoked potential stimulation: how close is the corticospinal tract?
    Shiban E; Krieg SM; Haller B; Buchmann N; Obermueller T; Boeckh-Behrens T; Wostrack M; Meyer B; Ringel F
    J Neurosurg; 2015 Sep; 123(3):711-20. PubMed ID: 26047412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Associations between clinical outcome and navigated transcranial magnetic stimulation characteristics in patients with motor-eloquent brain lesions: a combined navigated transcranial magnetic stimulation-diffusion tensor imaging fiber tracking approach.
    Sollmann N; Wildschuetz N; Kelm A; Conway N; Moser T; Bulubas L; Kirschke JS; Meyer B; Krieg SM
    J Neurosurg; 2018 Mar; 128(3):800-810. PubMed ID: 28362239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supratentorial cavernous malformations adjacent to the corticospinal tract: surgical outcomes and predictive value of diffusion tensor imaging findings.
    Lin Y; Lin F; Kang D; Jiao Y; Cao Y; Wang S
    J Neurosurg; 2018 Feb; 128(2):541-552. PubMed ID: 28362238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intraoperative magnetic resonance imaging-guided tractography with integrated monopolar subcortical functional mapping for resection of brain tumors. Clinical article.
    Prabhu SS; Gasco J; Tummala S; Weinberg JS; Rao G
    J Neurosurg; 2011 Mar; 114(3):719-26. PubMed ID: 20964594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffusion tensor imaging tractography and intraoperative neurophysiological monitoring in surgery of intracranial tumors located near the pyramidal tract.
    Zhukov VY; Goryaynov SA; Ogurtsova AA; Ageev IS; Protskiy SV; Pronin IN; Tonoyan AS; Kobyakov GL; Nenashev EA; Smirnov AS; Batalov AI; Potapov AA
    Zh Vopr Neirokhir Im N N Burdenko; 2016; 80(1):5-18. PubMed ID: 27029327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of quantitative corticospinal tract diffusion changes in patients affected by subcortical gliomas using common available navigation software.
    Giordano M; Nabavi A; Gerganov VM; Javadi AS; Samii M; Fahlbusch R; Samii A
    Clin Neurol Neurosurg; 2015 Sep; 136():1-4. PubMed ID: 26056803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous direct cortical motor evoked potential monitoring and subcortical mapping for motor pathway preservation during brain tumor surgery: is it useful?
    Landazuri P; Eccher M
    J Clin Neurophysiol; 2013 Dec; 30(6):623-5. PubMed ID: 24300989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Diffusion Tensor Imaging-Based Tractography of the Corticospinal Tract: A Correlative Study With Intraoperative Magnetic Resonance Imaging and Direct Electrical Subcortical Stimulation.
    Javadi SA; Nabavi A; Giordano M; Faghihzadeh E; Samii A
    Neurosurgery; 2017 Feb; 80(2):287-299. PubMed ID: 28175893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional MRI vs. navigated TMS to optimize M1 seed volume delineation for DTI tractography. A prospective study in patients with brain tumours adjacent to the corticospinal tract.
    Weiss Lucas C; Tursunova I; Neuschmelting V; Nettekoven C; Oros-Peusquens AM; Stoffels G; Faymonville AM; Jon SN; Langen KJ; Lockau H; Goldbrunner R; Grefkes C
    Neuroimage Clin; 2017; 13():297-309. PubMed ID: 28050345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Impact of Diffusion Tensor Imaging Fiber Tracking of the Corticospinal Tract Based on Navigated Transcranial Magnetic Stimulation on Surgery of Motor-Eloquent Brain Lesions.
    Raffa G; Conti A; Scibilia A; Cardali SM; Esposito F; Angileri FF; La Torre D; Sindorio C; Abbritti RV; Germanò A; Tomasello F
    Neurosurgery; 2018 Oct; 83(4):768-782. PubMed ID: 29211865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved nTMS- and DTI-derived CST tractography through anatomical ROI seeding on anterior pontine level compared to internal capsule.
    Weiss C; Tursunova I; Neuschmelting V; Lockau H; Nettekoven C; Oros-Peusquens AM; Stoffels G; Rehme AK; Faymonville AM; Shah NJ; Langen KJ; Goldbrunner R; Grefkes C
    Neuroimage Clin; 2015; 7():424-37. PubMed ID: 25685709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional Magnetic Resonance Imaging (fMRI), Pre-intraoperative Tractography in Neurosurgery: The Experience of Sant' Andrea Rome University Hospital.
    D'Andrea G; Trillo' G; Picotti V; Raco A
    Acta Neurochir Suppl; 2017; 124():241-250. PubMed ID: 28120080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Presurgical fMRI and DTI for the Prediction of Perioperative Motor and Language Deficits in Primary or Metastatic Brain Lesions.
    Bailey PD; Zacà D; Basha MM; Agarwal S; Gujar SK; Sair HI; Eng J; Pillai JJ
    J Neuroimaging; 2015; 25(5):776-84. PubMed ID: 26173383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.