BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 24618874)

  • 1. A novel P450-based biocatalyst for the selective production of chiral 2-alkanols.
    von Bühler CJ; Urlacher VB
    Chem Commun (Camb); 2014 Apr; 50(31):4089-91. PubMed ID: 24618874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of chiral 2-alkanols from n-alkanes by a P. putida whole-cell biocatalyst.
    Tieves F; Erenburg IN; Mahmoud O; Urlacher VB
    Biotechnol Bioeng; 2016 Sep; 113(9):1845-52. PubMed ID: 26887569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocatalytic route to chiral acyloins: P450-catalyzed regio- and enantioselective α-hydroxylation of ketones.
    Agudo R; Roiban GD; Lonsdale R; Ilie A; Reetz MT
    J Org Chem; 2015 Jan; 80(2):950-6. PubMed ID: 25495724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regio- and enantioselective alkane hydroxylation with engineered cytochromes P450 BM-3.
    Peters MW; Meinhold P; Glieder A; Arnold FH
    J Am Chem Soc; 2003 Nov; 125(44):13442-50. PubMed ID: 14583039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alkane hydroxylation by peroxy acids: a comparison with the cytochrome P450 hydroxylation.
    Groenhof AR; Ehlers AW; Lammertsma K
    J Phys Chem A; 2008 Dec; 112(50):12855-61. PubMed ID: 18956858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and functional analysis of cytochrome P450 CYP153A genes from various environments.
    Kubota M; Nodate M; Yasumoto-Hirose M; Uchiyama T; Kagami O; Shizuri Y; Misawa N
    Biosci Biotechnol Biochem; 2005 Dec; 69(12):2421-30. PubMed ID: 16377903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of perfluorocarboxylic acids to trick cytochrome P450BM3 into initiating the hydroxylation of gaseous alkanes.
    Kawakami N; Shoji O; Watanabe Y
    Angew Chem Int Ed Engl; 2011 May; 50(23):5315-8. PubMed ID: 21506212
    [No Abstract]   [Full Text] [Related]  

  • 8. Screening of a minimal enriched P450 BM3 mutant library for hydroxylation of cyclic and acyclic alkanes.
    Weber E; Seifert A; Antonovici M; Geinitz C; Pleiss J; Urlacher VB
    Chem Commun (Camb); 2011 Jan; 47(3):944-6. PubMed ID: 21079837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme-substrate complex structures of CYP154C5 shed light on its mode of highly selective steroid hydroxylation.
    Herzog K; Bracco P; Onoda A; Hayashi T; Hoffmann K; Schallmey A
    Acta Crystallogr D Biol Crystallogr; 2014 Nov; 70(Pt 11):2875-89. PubMed ID: 25372679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preferential hydroxylation over epoxidation catalysis by a horseradish peroxidase mutant: a cytochrome P450 mimic.
    de Visser SP
    J Phys Chem B; 2007 Oct; 111(42):12299-302. PubMed ID: 17914801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of p450pyr hydroxylase for the highly regio- and enantioselective subterminal hydroxylation of alkanes.
    Yang Y; Liu J; Li Z
    Angew Chem Int Ed Engl; 2014 Mar; 53(12):3120-4. PubMed ID: 24554642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regioselective hydroxylation of norisoprenoids by CYP109D1 from Sorangium cellulosum So ce56.
    Khatri Y; Girhard M; Romankiewicz A; Ringle M; Hannemann F; Urlacher VB; Hutter MC; Bernhardt R
    Appl Microbiol Biotechnol; 2010 Sep; 88(2):485-95. PubMed ID: 20645086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active site substitution A82W improves the regioselectivity of steroid hydroxylation by cytochrome P450 BM3 mutants as rationalized by spin relaxation nuclear magnetic resonance studies.
    Rea V; Kolkman AJ; Vottero E; Stronks EJ; Ampt KA; Honing M; Vermeulen NP; Wijmenga SS; Commandeur JN
    Biochemistry; 2012 Jan; 51(3):750-60. PubMed ID: 22208729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regioselective ω-hydroxylation of medium-chain n-alkanes and primary alcohols by CYP153 enzymes from Mycobacterium marinum and Polaromonas sp. strain JS666.
    Scheps D; Malca SH; Hoffmann H; Nestl BM; Hauer B
    Org Biomol Chem; 2011 Oct; 9(19):6727-33. PubMed ID: 21837346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CYP505E3: A Novel Self-Sufficient ω-7 In-Chain Hydroxylase.
    Maseme MJ; Pennec A; van Marwijk J; Opperman DJ; Smit MS
    Angew Chem Int Ed Engl; 2020 Jun; 59(26):10359-10362. PubMed ID: 32147902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A regioselective biocatalyst for alkane activation under mild conditions.
    Bordeaux M; Galarneau A; Fajula F; Drone J
    Angew Chem Int Ed Engl; 2011 Feb; 50(9):2075-9. PubMed ID: 21344555
    [No Abstract]   [Full Text] [Related]  

  • 17. A predictive pattern of computed barriers for C-h hydroxylation by compound I of cytochrome p450.
    de Visser SP; Kumar D; Cohen S; Shacham R; Shaik S
    J Am Chem Soc; 2004 Jul; 126(27):8362-3. PubMed ID: 15237977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of random mutagenesis and semi-rational designed libraries for improved cytochrome P450 BM3-catalyzed hydroxylation of small alkanes.
    Chen MM; Snow CD; Vizcarra CL; Mayo SL; Arnold FH
    Protein Eng Des Sel; 2012 Apr; 25(4):171-8. PubMed ID: 22334757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase.
    Glieder A; Farinas ET; Arnold FH
    Nat Biotechnol; 2002 Nov; 20(11):1135-9. PubMed ID: 12368811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the versatile monooxygenase CYP109B1 from Bacillus subtilis.
    Girhard M; Klaus T; Khatri Y; Bernhardt R; Urlacher VB
    Appl Microbiol Biotechnol; 2010 Jun; 87(2):595-607. PubMed ID: 20186410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.