These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 24619231)
1. Early diagenetic processes generate iron and manganese oxide layers in the sediments of Lake Baikal, Siberia. Torres NT; Och LM; Hauser PC; Furrer G; Brandl H; Vologina E; Sturm M; Bürgmann H; Müller B Environ Sci Process Impacts; 2014 Apr; 16(4):879-89. PubMed ID: 24619231 [TBL] [Abstract][Full Text] [Related]
2. Arsenic release from arsenic-bearing Fe-Mn binary oxide: effects of E(h) condition. Xu W; Wang H; Liu R; Zhao X; Qu J Chemosphere; 2011 May; 83(7):1020-7. PubMed ID: 21354590 [TBL] [Abstract][Full Text] [Related]
3. Phosphorus mobilization in lake sediments: Experimental evidence of strong control by iron and negligible influences of manganese redox reactions. Chen M; Ding S; Wu Y; Fan X; Jin Z; Tsang DCW; Wang Y; Zhang C Environ Pollut; 2019 Mar; 246():472-481. PubMed ID: 30583155 [TBL] [Abstract][Full Text] [Related]
4. Manganese(iv) oxide amendments reduce methylmercury concentrations in sediment porewater. Vlassopoulos D; Kanematsu M; Henry EA; Goin J; Leven A; Glaser D; Brown SS; O'Day PA Environ Sci Process Impacts; 2018 Dec; 20(12):1746-1760. PubMed ID: 30393799 [TBL] [Abstract][Full Text] [Related]
5. Biological regeneration of manganese (IV) and iron (III) for anaerobic metal oxide-mediated removal of pharmaceuticals from water. Liu W; Langenhoff AAM; Sutton NB; Rijnaarts HHM Chemosphere; 2018 Oct; 208():122-130. PubMed ID: 29864703 [TBL] [Abstract][Full Text] [Related]
6. Characterization of manganese oxide amendments for in situ remediation of mercury-contaminated sediments. Leven A; Vlassopoulos D; Kanematsu M; Goin J; O'Day PA Environ Sci Process Impacts; 2018 Dec; 20(12):1761-1773. PubMed ID: 30398226 [TBL] [Abstract][Full Text] [Related]
7. P, As, Sb, Mo, and other elements in sedimentary Fe/Mn layers of Lake Baikal. Müller B; Granina L; Schaller T; Ulrich A; Wehrli B Environ Sci Technol; 2002 Feb; 36(3):411-20. PubMed ID: 11871556 [TBL] [Abstract][Full Text] [Related]
8. Hydrous manganese oxide doped gel probe sampler for measuring in situ reductive dissolution rates. 2. Field deployment. Farnsworth CE; Griffis SD; Wildman RA; Hering JG Environ Sci Technol; 2010 Jan; 44(1):41-6. PubMed ID: 20039732 [TBL] [Abstract][Full Text] [Related]
9. Sediment porewater extraction and analysis combining filter tube samplers and capillary electrophoresis. Torres NT; Hauser PC; Furrer G; Brandl H; Müller B Environ Sci Process Impacts; 2013 Apr; 15(4):715-20. PubMed ID: 23493943 [TBL] [Abstract][Full Text] [Related]
10. Emerging investigator series: geochemistry of trace elements associated with Fe and Mn nodules in the sediment of limed boreal lakes. Couture RM; Hindar A; Rognerud S Environ Sci Process Impacts; 2018 Feb; 20(2):406-414. PubMed ID: 29359225 [TBL] [Abstract][Full Text] [Related]
11. The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction. Canfield DE; Thamdrup B; Hansen JW Geochim Cosmochim Acta; 1993 Aug; 57(16):3867-83. PubMed ID: 11537734 [TBL] [Abstract][Full Text] [Related]
12. Reactive iron in marine sediments. Canfield DE Geochim Cosmochim Acta; 1989; 53():619-32. PubMed ID: 11539783 [TBL] [Abstract][Full Text] [Related]
13. Evidence for the biogenic origin of manganese-enriched layers in Lake Superior sediments. Palermo C; Dittrich M Environ Microbiol Rep; 2016 Apr; 8(2):179-86. PubMed ID: 26636960 [TBL] [Abstract][Full Text] [Related]
14. [Environment effects of algae-caused black spots: impacts on Fe-Mn-S cycles in water-sediment interface]. Liu GF; He J; Fan CX; Zhang L; Shen QS; Zhong JC; Yan SH Huan Jing Ke Xue; 2010 Nov; 31(11):2652-60. PubMed ID: 21250447 [TBL] [Abstract][Full Text] [Related]
15. Biostimulation of iron reduction and subsequent oxidation of sediment containing Fe-silicates and Fe-oxides: effect of redox cycling on Fe(III) bioreduction. Komlos J; Kukkadapu RK; Zachara JM; Jaffé PR Water Res; 2007 Jul; 41(13):2996-3004. PubMed ID: 17467035 [TBL] [Abstract][Full Text] [Related]
16. Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite. Ehlert K; Mikutta C; Kretzschmar R Environ Sci Technol; 2014 Oct; 48(19):11320-9. PubMed ID: 25243611 [TBL] [Abstract][Full Text] [Related]
17. Impact of sulfate pollution on anaerobic biogeochemical cycles in a wetland sediment. Baldwin DS; Mitchell A Water Res; 2012 Mar; 46(4):965-74. PubMed ID: 22204939 [TBL] [Abstract][Full Text] [Related]
18. Processes of nickel and cobalt uptake by a manganese oxide forming sediment in Pinal Creek, Globe mining district, Arizona. Kay JT; Conklin MH; Fuller CC; O'Day PA Environ Sci Technol; 2001 Dec; 35(24):4719-25. PubMed ID: 11775144 [TBL] [Abstract][Full Text] [Related]
19. Rates and processes affecting As speciation and mobility in lake sediments during aging. Lock A; Wallschläger D; Belzile N; Spiers G; Gueguen C J Environ Sci (China); 2018 Apr; 66():338-347. PubMed ID: 29628103 [TBL] [Abstract][Full Text] [Related]
20. Influences of iron, manganese, and dissolved organic carbon on the hypolimnetic cycling of amended mercury. Chadwick SP; Babiarz CL; Hurley JP; Armstrong DE Sci Total Environ; 2006 Sep; 368(1):177-88. PubMed ID: 16225911 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]