These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 24619297)

  • 1. Active cytoskeletal force and chromatin condensation independently modulate intranuclear network fluctuations.
    Spagnol ST; Dahl KN
    Integr Biol (Camb); 2014 May; 6(5):523-31. PubMed ID: 24619297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Actomyosin and vimentin cytoskeletal networks regulate nuclear shape, mechanics and chromatin organization.
    Keeling MC; Flores LR; Dodhy AH; Murray ER; Gavara N
    Sci Rep; 2017 Jul; 7(1):5219. PubMed ID: 28701767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatially Resolved Quantification of Chromatin Condensation through Differential Local Rheology in Cell Nuclei Fluorescence Lifetime Imaging.
    Spagnol ST; Dahl KN
    PLoS One; 2016; 11(1):e0146244. PubMed ID: 26765322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytoskeletal control of nuclear morphology and chromatin organization.
    Ramdas NM; Shivashankar GV
    J Mol Biol; 2015 Feb; 427(3):695-706. PubMed ID: 25281900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force-induced changes in subnuclear movement and rheology.
    Booth-Gauthier EA; Alcoser TA; Yang G; Dahl KN
    Biophys J; 2012 Dec; 103(12):2423-31. PubMed ID: 23260044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 4-D single particle tracking of synthetic and proteinaceous microspheres reveals preferential movement of nuclear particles along chromatin - poor tracks.
    Bacher CP; Reichenzeller M; Athale C; Herrmann H; Eils R
    BMC Cell Biol; 2004 Nov; 5():45. PubMed ID: 15560848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intranuclear mesoscale viscoelastic changes during osteoblastic differentiation of human mesenchymal stem cells.
    Matsushita K; Nakahara C; Kimura S; Sakamoto N; Ii S; Miyoshi H
    FASEB J; 2021 Dec; 35(12):e22071. PubMed ID: 34820910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stress fluctuations and motion of cytoskeletal-bound markers.
    Raupach C; Zitterbart DP; Mierke CT; Metzner C; Müller FA; Fabry B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011918. PubMed ID: 17677505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modifications of chromatin structure and gene expression following induced alterations of cellular shape.
    Vergani L; Grattarola M; Nicolini C
    Int J Biochem Cell Biol; 2004 Aug; 36(8):1447-61. PubMed ID: 15147724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prestressed nuclear organization in living cells.
    Mazumder A; Roopa T; Kumar A; Iyer KV; Ramdas NM; Shivashankar GV
    Methods Cell Biol; 2010; 98():221-39. PubMed ID: 20816237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remodeling of nuclear architecture by the thiodioxoxpiperazine metabolite chaetocin.
    Illner D; Zinner R; Handtke V; Rouquette J; Strickfaden H; Lanctôt C; Conrad M; Seiler A; Imhof A; Cremer T; Cremer M
    Exp Cell Res; 2010 Jun; 316(10):1662-80. PubMed ID: 20302859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determining mechanical features of modulated epithelial monolayers using subnuclear particle tracking.
    Armiger TJ; Lampi MC; Reinhart-King CA; Dahl KN
    J Cell Sci; 2018 Jun; 131(12):. PubMed ID: 29748381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatin motion in neuronal interphase nuclei: changes induced by disruption of intermediate filaments.
    Hay M; De Boni U
    Cell Motil Cytoskeleton; 1991; 18(1):63-75. PubMed ID: 2004434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic biophysical responses of neuronal cell nuclei and cytoskeletal structure following high impulse loading.
    Schneider SE; Scott AK; Seelbinder B; Elzen CVD; Wilson RL; Miller EY; Beato QI; Ghosh S; Barthold JE; Bilyeu J; Emery NC; Pierce DM; Neu CP
    Acta Biomater; 2023 Jun; 163():339-350. PubMed ID: 35811070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental techniques for study of chromatin mechanics in intact nuclei and living cells.
    Verstraeten VL; Lammerding J
    Chromosome Res; 2008; 16(3):499-510. PubMed ID: 18461486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of chromatin condensation during granulopoiesis in the regulation of gene cluster expression.
    Stejskal S; Koutna I; Matula P; Rucka Z; Danek O; Maska M; Kozubek M
    Epigenetics; 2010; 5(8):758-66. PubMed ID: 20798609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of chromatin condensation disrupts planar cell migration.
    Forman J; Hine B; Kaonis S; Ghosh S
    Nucleus; 2024 Dec; 15(1):2325961. PubMed ID: 38465796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordinate induction of the actin cytoskeletal regulatory proteins gelsolin, vasodilator-stimulated phosphoprotein, and profilin during capillary morphogenesis in vitro.
    Salazar R; Bell SE; Davis GE
    Exp Cell Res; 1999 May; 249(1):22-32. PubMed ID: 10328950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-talk between leukemic and endothelial cells promotes angiogenesis by VEGF activation of the Notch/Dll4 pathway.
    Zhang J; Ye J; Ma D; Liu N; Wu H; Yu S; Sun X; Tse W; Ji C
    Carcinogenesis; 2013 Mar; 34(3):667-77. PubMed ID: 23239744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin remodeling in silico: a stochastic model for SWI/SNF.
    Mazloom AR; Basu K; Mandal SS; Das SK
    Biosystems; 2010 Mar; 99(3):179-91. PubMed ID: 19945504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.