BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 24619311)

  • 1. The interplay between Epstein-Barr virus and B lymphocytes: implications for infection, immunity, and disease.
    Hatton OL; Harris-Arnold A; Schaffert S; Krams SM; Martinez OM
    Immunol Res; 2014 May; 58(2-3):268-76. PubMed ID: 24619311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple Viral microRNAs Regulate Interferon Release and Signaling Early during Infection with Epstein-Barr Virus.
    Bouvet M; Voigt S; Tagawa T; Albanese M; Chen YA; Chen Y; Fachko DN; Pich D; Göbel C; Skalsky RL; Hammerschmidt W
    mBio; 2021 Mar; 12(2):. PubMed ID: 33785626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The EBV immunoevasins vIL-10 and BNLF2a protect newly infected B cells from immune recognition and elimination.
    Jochum S; Moosmann A; Lang S; Hammerschmidt W; Zeidler R
    PLoS Pathog; 2012; 8(5):e1002704. PubMed ID: 22615564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Temporal Proteomic Map of Epstein-Barr Virus Lytic Replication in B Cells.
    Ersing I; Nobre L; Wang LW; Soday L; Ma Y; Paulo JA; Narita Y; Ashbaugh CW; Jiang C; Grayson NE; Kieff E; Gygi SP; Weekes MP; Gewurz BE
    Cell Rep; 2017 May; 19(7):1479-1493. PubMed ID: 28514666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deciphering the Role of Epstein-Barr Virus Latent Membrane Protein 1 in Immune Modulation: A Multifaced Signalling Perspective.
    Šimičić P; Batović M; Stojanović Marković A; Židovec-Lepej S
    Viruses; 2024 Apr; 16(4):. PubMed ID: 38675906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tree Shrew Is a Suitable Animal Model for the Study of Epstein Barr Virus.
    Xia W; Chen H; Feng Y; Shi N; Huang Z; Feng Q; Jiang X; He G; Xie M; Lai Y; Wang Z; Yi X; Tang A
    Front Immunol; 2021; 12():789604. PubMed ID: 35111158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome reprogramming of Epstein-Barr virus infected epithelial and B cells reveals distinct host-virus interaction profiles.
    Ma N; Lu J; Pei Y; Robertson ES
    Cell Death Dis; 2022 Oct; 13(10):894. PubMed ID: 36272970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunity and Immune Evasion Mechanisms of Epstein-Barr Virus.
    Yao Y; Kong W; Yang L; Ding Y; Cui H
    Viral Immunol; 2023 Jun; 36(5):303-317. PubMed ID: 37285188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The infectious kiss: newly infected B cells deliver Epstein-Barr virus to epithelial cells.
    Bornkamm GW; Behrends U; Mautner J
    Proc Natl Acad Sci U S A; 2006 May; 103(19):7201-2. PubMed ID: 16651525
    [No Abstract]   [Full Text] [Related]  

  • 10. Mechanisms of T cell evasion by Epstein-Barr virus and implications for tumor survival.
    Sausen DG; Poirier MC; Spiers LM; Smith EN
    Front Immunol; 2023; 14():1289313. PubMed ID: 38179040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epstein-Barr virus: the mastermind of immune chaos.
    Silva JM; Alves CEC; Pontes GS
    Front Immunol; 2024; 15():1297994. PubMed ID: 38384471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epstein-Barr virus regulates the life cycle and host cell biology by hijacking post-translational modification.
    Zhang X; Zhang Y; Liu W; Luo B
    Rev Med Virol; 2023 Jul; 33(4):e2447. PubMed ID: 37029718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EBV Persistence--Introducing the Virus.
    Thorley-Lawson DA
    Curr Top Microbiol Immunol; 2015; 390(Pt 1):151-209. PubMed ID: 26424647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epstein-Barr virus and host cell 3D genome organization.
    Wang C; Zhao B
    J Med Virol; 2023 Nov; 95(11):e29234. PubMed ID: 37988227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Epstein-Barr virus protein interaction map reveals NLRP3 inflammasome evasion via MAVS UFMylation.
    Yiu SPT; Zerbe C; Vanderwall D; Huttlin EL; Weekes MP; Gewurz BE
    Mol Cell; 2023 Jul; 83(13):2367-2386.e15. PubMed ID: 37311461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman spectroscopy of lymphocytes from patients with the Epstein-Barr virus infection.
    Pietruszewska M; Biesiada G; Czepiel J; Birczyńska-Zych M; Moskal P; Garlicki A; Wesełucha-Birczyńska A
    Sci Rep; 2024 Mar; 14(1):6417. PubMed ID: 38494496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of self-regulation of the epidemic process of infection caused by the Epstein-Barr virus (Herpesviridae:
    Solomay TV; Semenenko TA; Akimkin VG
    Vopr Virusol; 2023 Sep; 68(4):343-354. PubMed ID: 38156591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epstein-Barr virus infectious particles initiate B cell transformation and modulate cytokine response.
    Baccianti F; Masson C; Delecluse S; Li Z; Poirey R; Delecluse H-J
    mBio; 2023 Oct; 14(5):e0178423. PubMed ID: 37830871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Main Targets of Interest for the Development of a Prophylactic or Therapeutic Epstein-Barr Virus Vaccine.
    Jean-Pierre V; Lupo J; Buisson M; Morand P; Germi R
    Front Microbiol; 2021; 12():701611. PubMed ID: 34239514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epstein-Barr virus infection: the micro and macro worlds.
    Huang W; Bai L; Tang H
    Virol J; 2023 Oct; 20(1):220. PubMed ID: 37784180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.