These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 24619544)

  • 1. Mechanisms of silicon sputtering and cluster formation explained by atomic level simulations.
    Barry PR; Philipp P; Wirtz T; Kieffer J
    J Mass Spectrom; 2014 Mar; 49(3):185-94. PubMed ID: 24619544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seduction of Finding Universality in Sputtering Yields Due to Cluster Bombardment of Solids.
    Paruch RJ; Postawa Z; Garrison BJ
    Acc Chem Res; 2015 Sep; 48(9):2529-36. PubMed ID: 26248727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of metal nanoparticles on the secondary ion yields of a model alkane molecule upon atomic and polyatomic projectiles in secondary ion mass spectrometry.
    Wehbe N; Heile A; Arlinghaus HF; Bertrand P; Delcorte A
    Anal Chem; 2008 Aug; 80(16):6235-44. PubMed ID: 18630928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular depth profiling of sucrose films: a comparative study of C60(n+) ions and traditional Cs(+) and O2(+) ions.
    Zhu Z; Nachimuthu P; Lea AS
    Anal Chem; 2009 Oct; 81(20):8272-9. PubMed ID: 19769372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling of cluster emission from metal surfaces under ion impact.
    Betz G; Husinsky W
    Philos Trans A Math Phys Eng Sci; 2004 Jan; 362(1814):177-94. PubMed ID: 15306283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On Universality in Sputtering Yields Due to Cluster Bombardment.
    Paruch RJ; Garrison BJ; Mlynek M; Postawa Z
    J Phys Chem Lett; 2014 Sep; 5(18):3227-30. PubMed ID: 26276337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer simulations of cluster impacts: effects of the atomic masses of the projectile and target.
    Restrepo OA; Gonze X; Bertrand P; Delcorte A
    Phys Chem Chem Phys; 2013 May; 15(20):7621-7. PubMed ID: 23591660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coulomb explosion sputtering of selectively oxidized Si.
    Karmakar P; Bhattacharjee S; Naik V; Sinha AK; Chakrabarti A
    J Phys Condens Matter; 2010 May; 22(17):175005. PubMed ID: 21393663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organic surfaces excited by low-energy ions: atomic collisions, molecular desorption and buckminsterfullerenes.
    Delcorte A
    Phys Chem Chem Phys; 2005 Oct; 7(19):3395-406. PubMed ID: 16273138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhodium and silicon system: II. Rhodium silicide formation.
    Marot L; Schoch R; Steiner R; Thommen V; Mathys D; Meyer E
    Nanotechnology; 2010 Sep; 21(36):365707. PubMed ID: 20702929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of plasma impurities on the sputtering of tungsten carbide.
    Vörtler K; Björkas C; Nordlund K
    J Phys Condens Matter; 2011 Mar; 23(8):085002. PubMed ID: 21411895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parallel detection, quantification, and depth profiling of peptides with dynamic-secondary ion mass spectrometry (D-SIMS) ionized by C60(+)-Ar(+) co-sputtering.
    Chang CJ; Chang HY; You YW; Liao HY; Kuo YT; Kao WL; Yen GJ; Tsai MH; Shyue JJ
    Anal Chim Acta; 2012 Mar; 718():64-9. PubMed ID: 22305899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sputter-induced chemical transformation in oxoanions by combination of C(60)(+) and Ar(+) ion beams analyzed with X-ray photoelectron spectrometry.
    Lin YC; Chen YY; Yu BY; Lin WC; Kuo CH; Shyue JJ
    Analyst; 2009 May; 134(5):945-51. PubMed ID: 19381389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical energy release and radical formation in cluster-induced sputtering of diatomic molecular targets: a molecular-dynamics model study.
    Anders C; Urbassek HM
    Phys Rev Lett; 2007 Jul; 99(2):027602. PubMed ID: 17678262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silylation of an OH-terminated self-assembled monolayer surface through low-energy collisions of ions: a novel route to synthesis and patterning of surfaces.
    Wade N; Evans C; Jo SC; Cooks RG
    J Mass Spectrom; 2002 Jun; 37(6):591-602. PubMed ID: 12112741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small Al cluster ion implantation into Si and 4H-SiC.
    Zeng X; Pelenovich V; Ieshkin A; Danilov A; Tolstogouzov A; Zuo W; Ranjana J; Hu D; Devi N; Fu D; Xiao X
    Rapid Commun Mass Spectrom; 2019 Sep; 33(18):1449-1454. PubMed ID: 31128075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sputter-depth profiling for thin-film analysis.
    Hofmann S
    Philos Trans A Math Phys Eng Sci; 2004 Jan; 362(1814):55-75. PubMed ID: 15306276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive force field potential for carbon deposition on silicon surfaces.
    Briquet LG; Jana A; Mether L; Nordlund K; Henrion G; Philipp P; Wirtz T
    J Phys Condens Matter; 2012 Oct; 24(39):395004. PubMed ID: 22914286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of bombardment on optical properties during the deposition of silicon nitride by reactive ion-beam sputtering.
    Lambrinos MF; Valizadeh R; Colligon JS
    Appl Opt; 1996 Jul; 35(19):3620-6. PubMed ID: 21102756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin of atomic clusters during ion sputtering.
    Rehn LE; Birtcher RC; Donnelly SE; Baldo PM; Funk L
    Phys Rev Lett; 2001 Nov; 87(20):207601. PubMed ID: 11690512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.