These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Emerging nanotechnology for detection of mycotoxins in food and feed. Rai M; Jogee PS; Ingle AP Int J Food Sci Nutr; 2015; 66(4):363-70. PubMed ID: 26001087 [TBL] [Abstract][Full Text] [Related]
25. An electrochemical nanobiosensor for plasma miRNA-155, based on graphene oxide and gold nanorod, for early detection of breast cancer. Azimzadeh M; Rahaie M; Nasirizadeh N; Ashtari K; Naderi-Manesh H Biosens Bioelectron; 2016 Mar; 77():99-106. PubMed ID: 26397420 [TBL] [Abstract][Full Text] [Related]
26. Nanobiosensors and their role in detection of adulterants and contaminants in food products. Kaur G; Bhari R; Kumar K Crit Rev Biotechnol; 2024 Jun; 44(4):547-561. PubMed ID: 36842973 [TBL] [Abstract][Full Text] [Related]
27. Cancer nanotechnology: application of nanotechnology in cancer therapy. Misra R; Acharya S; Sahoo SK Drug Discov Today; 2010 Oct; 15(19-20):842-50. PubMed ID: 20727417 [TBL] [Abstract][Full Text] [Related]
28. Functional nanoprobes for ultrasensitive detection of biomolecules. Song S; Qin Y; He Y; Huang Q; Fan C; Chen HY Chem Soc Rev; 2010 Nov; 39(11):4234-43. PubMed ID: 20871878 [TBL] [Abstract][Full Text] [Related]
29. Nanoprobes for in vitro diagnostics of cancer and infectious diseases. Chi X; Huang D; Zhao Z; Zhou Z; Yin Z; Gao J Biomaterials; 2012 Jan; 33(1):189-206. PubMed ID: 21959007 [TBL] [Abstract][Full Text] [Related]
30. Nanotechnology for early cancer detection. Choi YE; Kwak JW; Park JW Sensors (Basel); 2010; 10(1):428-55. PubMed ID: 22315549 [TBL] [Abstract][Full Text] [Related]
31. Recent applications of carbon nanomaterials in fluorescence biosensing and bioimaging. Wen J; Xu Y; Li H; Lu A; Sun S Chem Commun (Camb); 2015 Jul; 51(57):11346-58. PubMed ID: 25990681 [TBL] [Abstract][Full Text] [Related]
32. Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Hrapovic S; Liu Y; Male KB; Luong JH Anal Chem; 2004 Feb; 76(4):1083-8. PubMed ID: 14961742 [TBL] [Abstract][Full Text] [Related]
33. Nanoparticles as tools to study and control stem cells. Ferreira L J Cell Biochem; 2009 Nov; 108(4):746-52. PubMed ID: 19708027 [TBL] [Abstract][Full Text] [Related]
34. What can nanotechnology do to fight cancer? Gallego O; Puntes V Clin Transl Oncol; 2006 Nov; 8(11):788-95. PubMed ID: 17134966 [TBL] [Abstract][Full Text] [Related]
35. Development of immunosensors using carbon nanotubes. Veetil JV; Ye K Biotechnol Prog; 2007; 23(3):517-31. PubMed ID: 17458980 [TBL] [Abstract][Full Text] [Related]
36. Application of nanotechnology in cancer: a review. Kolhe S; Parikh K Int J Bioinform Res Appl; 2012; 8(1-2):112-25. PubMed ID: 22450274 [TBL] [Abstract][Full Text] [Related]
38. Nanobiotechnology: the promise and reality of new approaches to molecular recognition. Fortina P; Kricka LJ; Surrey S; Grodzinski P Trends Biotechnol; 2005 Apr; 23(4):168-73. PubMed ID: 15780707 [TBL] [Abstract][Full Text] [Related]
39. Forced assembly of water-dispersible carbon nanotubes trapped in paper for cheap gas sensors. Wang J; Zhang X; Huang X; Wang S; Qian Q; Du W; Wang Y Small; 2013 Nov; 9(22):3759-64. PubMed ID: 23670832 [TBL] [Abstract][Full Text] [Related]
40. Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cuenca AG; Jiang H; Hochwald SN; Delano M; Cance WG; Grobmyer SR Cancer; 2006 Aug; 107(3):459-66. PubMed ID: 16795065 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]