These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 2461968)

  • 1. Projections from the medial cortex in the brain of lizards: correlation of anterograde and retrograde transport of horseradish peroxidase with Timm staining.
    Olucha F; Martinez-Garcia F; Poch L; Schwerdtfeger WK; Lopez-Garcia C
    J Comp Neurol; 1988 Oct; 276(4):469-80. PubMed ID: 2461968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interhemispheric connections through the pallial commissures in the brain of Podarcis hispanica and Gallotia stehlinii (Reptilia, Lacertidae).
    Martíanez-Garcíaa F; Amiguet M; Schwerdtfeger WK; Olucha FE; Lorente MJ
    J Morphol; 1990 Jul; 205(1):17-31. PubMed ID: 29865699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurons in the medial cortex give rise to Timm-positive boutons in the cerebral cortex of lizards.
    Lopez-Garcia C; Martinez-Guijarro FJ
    Brain Res; 1988 Nov; 463(2):205-17. PubMed ID: 2461786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efferent connections of the dorsal cortex of the lizard Gekko gecko studied with Phaseolus vulgaris-leucoagglutinin.
    Hoogland PV; Vermeulen-Vanderzee E
    J Comp Neurol; 1989 Jul; 285(3):289-303. PubMed ID: 2760266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organization of zinc-containing terminal fields in the brain of the lizard Podarcis hispanica: a histochemical study.
    Pérez-Clausell J
    J Comp Neurol; 1988 Jan; 267(2):153-71. PubMed ID: 2449475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ascending connections to the forebrain in the Tegu lizard.
    Lohman AH; van Woerden-Verkley I
    J Comp Neurol; 1978 Dec; 182(3):555-74. PubMed ID: 721969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PSA-NCAM immunocytochemistry in the cerebral cortex and other telencephalic areas of the lizard Podarcis hispanica: differential expression during medial cortex neuronal regeneration.
    Ramirez-Castillejo C; Nacher J; Molowny A; Ponsoda X; Lopez-Garcia C
    J Comp Neurol; 2002 Nov; 453(2):145-56. PubMed ID: 12373780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thalamic connections with limbic cortex. I. Thalamocortical projections.
    Robertson RT; Kaitz SS
    J Comp Neurol; 1981 Jan; 195(3):501-25. PubMed ID: 7204659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurons of the medial cortex outer plexiform layer of the lizard Podarcis hispanica: Golgi and immunocytochemical studies.
    de la Iglesia JA; Martinez-Guijarro FI; Lopez-Garcia C
    J Comp Neurol; 1994 Mar; 341(2):184-203. PubMed ID: 8163723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laminar distribution and morphology of gamma-aminobutyric acid (GABA)-immunoreactive neurons in the medial and dorsomedial areas of the cerebral cortex of the lizard Podarcis hispanica.
    Schwerdtfeger WK; Lorente MJ
    J Comp Neurol; 1988 Dec; 278(4):473-85. PubMed ID: 3230168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organization of subcortical pathways for sensory projections to the limbic cortex. I. Subcortical projections to the medial limbic cortex in the rat.
    Thompson SM; Robertson RT
    J Comp Neurol; 1987 Nov; 265(2):175-88. PubMed ID: 3320108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prosencephalic afferents to the mediodorsal thalamic nucleus.
    Velayos JL; Reinoso-Suárez F
    J Comp Neurol; 1985 Dec; 242(2):161-81. PubMed ID: 4086663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increase of the neuron number in some cerebral cortical areas of a lizard, Podarcis hispanica, (Steind., 1870), during postnatal periods of life.
    López-García C; Tineo PL; Del Corral J
    J Hirnforsch; 1984; 25(3):255-9. PubMed ID: 6470463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subdivisions and connections of inferior temporal cortex in owl monkeys.
    Weller RE; Kaas JH
    J Comp Neurol; 1987 Feb; 256(1):137-72. PubMed ID: 3819036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zonal organization of climbing fiber projections to the uvula in the cat.
    Kanda K; Sato Y; Ikarashi K; Kawasaki T
    J Comp Neurol; 1989 Jan; 279(1):138-48. PubMed ID: 2913058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zonal organization of the climbing fiber projection to the flocculus and nodulus of the rabbit: a combined axonal tracing and acetylcholinesterase histochemical study.
    Tan J; Gerrits NM; Nanhoe R; Simpson JI; Voogd J
    J Comp Neurol; 1995 May; 356(1):23-50. PubMed ID: 7543121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efferent connections of the substantia innominata in the rat.
    Grove EA
    J Comp Neurol; 1988 Nov; 277(3):347-64. PubMed ID: 2461973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Medial cortex of the lizard Gekko gecko: a hodological study with emphasis on regional specialization.
    Hoogland PV; Vermeulen-VanderZee E
    J Comp Neurol; 1993 May; 331(3):326-38. PubMed ID: 8514912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Connections of the parahippocampal cortex in the cat. III. Cortical and thalamic efferents.
    Witter MP; Groenewegen HJ
    J Comp Neurol; 1986 Oct; 252(1):1-31. PubMed ID: 3793972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The organization of projections from the cortex, amygdala, and hypothalamus to the nucleus of the solitary tract in rat.
    van der Kooy D; Koda LY; McGinty JF; Gerfen CR; Bloom FE
    J Comp Neurol; 1984 Mar; 224(1):1-24. PubMed ID: 6715573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.