These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 24619702)

  • 21. Listeria monocytogenes-based antibiotic resistance gene-free antigen delivery system applicable to other bacterial vectors and DNA vaccines.
    Verch T; Pan ZK; Paterson Y
    Infect Immun; 2004 Nov; 72(11):6418-25. PubMed ID: 15501772
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Novel Nonantibiotic,
    Terrinoni M; Nordqvist SL; Källgård S; Holmgren J; Lebens M
    Appl Environ Microbiol; 2018 Feb; 84(4):. PubMed ID: 29222103
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automated fed-batch fermentation with feed-back controls based on dissolved oxygen (DO) and pH for production of DNA vaccines.
    Chen W; Graham C; Ciccarelli RB
    J Ind Microbiol Biotechnol; 1997 Jan; 18(1):43-8. PubMed ID: 9079287
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cultivation of E. coli carrying a plasmid-based Measles vaccine construct (4.2 kbp pcDNA3F) employing medium optimisation and pH-temperature induction techniques.
    Ongkudon CM; Pickering R; Webster D; Danquah MK
    Microb Cell Fact; 2011 Mar; 10():16. PubMed ID: 21375765
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A pestivirus DNA vaccine based on a non-antibiotic resistance Escherichia coli essential gene marker.
    El-Attar LM; Scott S; Goh S; Good L
    Vaccine; 2012 Feb; 30(9):1702-9. PubMed ID: 22212129
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Segregated growth kinetics of Escherichia coli DH5α-NH36 in exponential-fed perfusion culture for pDNA vaccine production.
    Munguía-Soto R; García-Rendón A; Garibay-Escobar A; Guerrero-Germán P; Tejeda-Mansir A
    Biotechnol Appl Biochem; 2015; 62(6):795-805. PubMed ID: 25556882
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rational engineering of Escherichia coli strains for plasmid biopharmaceutical manufacturing.
    Gonçalves GA; Bower DM; Prazeres DM; Monteiro GA; Prather KL
    Biotechnol J; 2012 Feb; 7(2):251-61. PubMed ID: 21913330
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DNA Vaccination in Chickens.
    Gupta SK; Dey S; Chellappa MM
    Methods Mol Biol; 2016; 1404():165-178. PubMed ID: 27076297
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Marker-free plasmids for gene therapeutic applications--lack of antibiotic resistance gene substantially improves the manufacturing process.
    Mairhofer J; Cserjan-Puschmann M; Striedner G; Nöbauer K; Razzazi-Fazeli E; Grabherr R
    J Biotechnol; 2010 Apr; 146(3):130-7. PubMed ID: 20138928
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmid DNA fermentation strain and process-specific effects on vector yield, quality, and transgene expression.
    Carnes AE; Luke JM; Vincent JM; Schukar A; Anderson S; Hodgson CP; Williams JA
    Biotechnol Bioeng; 2011 Feb; 108(2):354-63. PubMed ID: 20830679
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A potential disruptive technology in vaccine development: gene-based vaccines and their application to infectious diseases.
    Kaslow DC
    Trans R Soc Trop Med Hyg; 2004 Oct; 98(10):593-601. PubMed ID: 15289096
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of plasmid DNA vaccine design and in vivo electroporation on the resulting vaccine-specific immune responses in rhesus macaques.
    Luckay A; Sidhu MK; Kjeken R; Megati S; Chong SY; Roopchand V; Garcia-Hand D; Abdullah R; Braun R; Montefiori DC; Rosati M; Felber BK; Pavlakis GN; Mathiesen I; Israel ZR; Eldridge JH; Egan MA
    J Virol; 2007 May; 81(10):5257-69. PubMed ID: 17329330
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Upstream processing of plasmid DNA for vaccine and gene therapy applications.
    Tejeda-Mansir A; Montesinos RM
    Recent Pat Biotechnol; 2008; 2(3):156-72. PubMed ID: 19075863
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A blueprint for DNA vaccine design.
    Iurescia S; Fioretti D; Rinaldi M
    Methods Mol Biol; 2014; 1143():3-10. PubMed ID: 24715278
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Marker-free plasmids for biotechnological applications - implications and perspectives.
    Oliveira PH; Mairhofer J
    Trends Biotechnol; 2013 Sep; 31(9):539-47. PubMed ID: 23830144
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel plasmid vector designed for chromosomal gene integration and expression: use for developing a genetically stable Escherichia coli melanin production strain.
    Sabido A; Martínez LM; de Anda R; Martínez A; Bolívar F; Gosset G
    Plasmid; 2013 Jan; 69(1):16-23. PubMed ID: 22884755
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DNA vaccine design.
    Brandsma JL
    Methods Mol Med; 2006; 127():3-10. PubMed ID: 16988442
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The antibiotic resistance-free mammalian expression plasmid vector pPAL for development of third generation vaccines.
    Alcolea PJ; Alonso A; Larraga V
    Plasmid; 2019 Jan; 101():35-42. PubMed ID: 30529129
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antibiotic-free production of a herpes simplex virus 2 DNA vaccine in a high yield cGMP process.
    Nelson J; Rodriguez S; Finlayson N; Williams J; Carnes A
    Hum Vaccin Immunother; 2013 Oct; 9(10):2211-5. PubMed ID: 23899469
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preclinical development of BCG.HIVA
    Mahant A; Saubi N; Eto Y; Guitart N; Gatell JM; Hanke T; Joseph J
    Hum Vaccin Immunother; 2017 Aug; 13(8):1798-1810. PubMed ID: 28426273
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.