These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 24619800)

  • 1. The effect of turbulent viscous shear stress on red blood cell hemolysis.
    Yen JH; Chen SF; Chern MK; Lu PC
    J Artif Organs; 2014 Jun; 17(2):178-85. PubMed ID: 24619800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of viscous dissipative stresses induced by a mechanical heart valve using PIV data.
    Li CP; Lo CW; Lu PC
    Ann Biomed Eng; 2010 Mar; 38(3):903-16. PubMed ID: 20020213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A relationship between Reynolds stresses and viscous dissipation: implications to red cell damage.
    Jones SA
    Ann Biomed Eng; 1995; 23(1):21-8. PubMed ID: 7762879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-dimensional color-mapping of turbulent shear stress distribution downstream of two aortic bioprosthetic valves in vitro.
    Nygaard H; Giersiepen M; Hasenkam JM; Reul H; Paulsen PK; Rovsing PE; Westphal D
    J Biomech; 1992 Apr; 25(4):429-40. PubMed ID: 1583021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human red blood cell hemolysis in a turbulent shear flow: contribution of Reynolds shear stresses.
    Sallam AM; Hwang NH
    Biorheology; 1984; 21(6):783-97. PubMed ID: 6240286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rethinking turbulence in blood.
    Antiga L; Steinman DA
    Biorheology; 2009; 46(2):77-81. PubMed ID: 19458411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of Transitional and Turbulent Flow Through the FDA Benchmark Nozzle Model Using Laser Doppler Velocimetry.
    Taylor JO; Good BC; Paterno AV; Hariharan P; Deutsch S; Malinauskas RA; Manning KB
    Cardiovasc Eng Technol; 2016 Sep; 7(3):191-209. PubMed ID: 27350137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Models of flow-induced loading on blood cells in laminar and turbulent flow, with application to cardiovascular device flow.
    Quinlan NJ; Dooley PN
    Ann Biomed Eng; 2007 Aug; 35(8):1347-56. PubMed ID: 17458700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of Reynolds Shear Stress Level for Hemolysis.
    Jhun CS; Stauffer MA; Reibson JD; Yeager EE; Newswanger RK; Taylor JO; Manning KB; Weiss WJ; Rosenberg G
    ASAIO J; 2018; 64(1):63-69. PubMed ID: 28661910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Turbulence in blood damage modeling.
    Goubergrits L; Osman J; Mevert R; Kertzscher U; Pöthkow K; Hege HC
    Int J Artif Organs; 2016 Jun; 39(4):160-5. PubMed ID: 27034315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A reevaluation and discussion on the threshold limit for hemolysis in a turbulent shear flow.
    Lu PC; Lai HC; Liu JS
    J Biomech; 2001 Oct; 34(10):1361-4. PubMed ID: 11522317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pulsatile flow studies of a porcine bioprosthetic aortic valve in vitro: PIV measurements and shear-induced blood damage.
    Lim WL; Chew YT; Chew TC; Low HT
    J Biomech; 2001 Nov; 34(11):1417-27. PubMed ID: 11672716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of energy dissipation rate as a predictor of mechanical blood damage.
    Faghih MM; Sharp MK
    Artif Organs; 2019 Jul; 43(7):666-676. PubMed ID: 30588644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shear stress investigation across mechanical heart valve.
    Zhang P; Yeo JH; Qian P; Hwang NH
    ASAIO J; 2007; 53(5):530-6. PubMed ID: 17885324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of turbulent shear stresses in pulsatile flow immediately downstream of two artificial aortic valves in vitro.
    Nygaard H; Giersiepen M; Hasenkam JM; Westphal D; Paulsen PK; Reul H
    J Biomech; 1990; 23(12):1231-8. PubMed ID: 2292602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Turbulence characteristics downstream of bileaflet aortic valve prostheses.
    Liu JS; Lu PC; Chu SH
    J Biomech Eng; 2000 Apr; 122(2):118-24. PubMed ID: 10834151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of hemolysis in turbulent shear orifice flow.
    Tamagawa M; Akamatsu T; Saitoh K
    Artif Organs; 1996 Jun; 20(6):553-9. PubMed ID: 8817954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemolysis Related to Turbulent Eddy Size Distributions Using Comparisons of Experiments to Computations.
    Ozturk M; O'Rear EA; Papavassiliou DV
    Artif Organs; 2015 Dec; 39(12):E227-39. PubMed ID: 26412190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of turbulent stresses upon mechanical hemolysis: experimental and computational analysis.
    Kameneva MV; Burgreen GW; Kono K; Repko B; Antaki JF; Umezu M
    ASAIO J; 2004; 50(5):418-23. PubMed ID: 15497379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monodimensional estimation of maximum Reynolds shear stress in the downstream flow field of bileaflet valves.
    Grigioni M; Daniele C; D'Avenio G; Barbaro V
    J Heart Valve Dis; 2002 May; 11(3):392-401. PubMed ID: 12056734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.