BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 24619807)

  • 1. A comparative analysis of the relative efficacy of vector-control strategies against dengue fever.
    Amaku M; Coutinho FA; Raimundo SM; Lopez LF; Nascimento Burattini M; Massad E
    Bull Math Biol; 2014 Mar; 76(3):697-717. PubMed ID: 24619807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Follow up estimation of Aedes aegypti entomological parameters and mathematical modellings.
    Yang HM; Macoris Mde L; Galvani KC; Andrighetti MT
    Biosystems; 2011 Mar; 103(3):360-71. PubMed ID: 21093536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multiobjective optimization approach for combating Aedes aegypti using chemical and biological alternated step-size control.
    Dias WO; Wanner EF; Cardoso RT
    Math Biosci; 2015 Nov; 269():37-47. PubMed ID: 26362231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An optimal control problem arising from a dengue disease transmission model.
    Aldila D; Götz T; Soewono E
    Math Biosci; 2013 Mar; 242(1):9-16. PubMed ID: 23274179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of the Aedes vectors of the dengue viruses and Wuchereria bancrofti: the French Polynesian experience.
    Lardeux F; Rivière F; Séchan Y; Loncke S
    Ann Trop Med Parasitol; 2002 Dec; 96 Suppl 2():S105-16. PubMed ID: 12625924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of and factors associated with dengue vector breeding sites in the City of Colombo, Sri Lanka.
    Louis VR; Montenegro Quiñonez CA; Kusumawathie P; Palihawadana P; Janaki S; Tozan Y; Wijemuni R; Wilder-Smith A; Tissera HA
    Pathog Glob Health; 2016 Mar; 110(2):79-86. PubMed ID: 27241954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the present dengue situation and control strategies against Aedes aegypti in Cebu City, Philippines.
    Mahilum MM; Ludwig M; Madon MB; Becker N
    J Vector Ecol; 2005 Dec; 30(2):277-83. PubMed ID: 16599163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of a Dengue Model with Vertical Transmission and Application to the 2014 Dengue Outbreak in Guangdong Province, China.
    Zou L; Chen J; Feng X; Ruan S
    Bull Math Biol; 2018 Oct; 80(10):2633-2651. PubMed ID: 30083966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dengue vector control and surveillance during a major outbreak in a coastal Red Sea area in Sudan.
    Seidahmed OM; Siam HA; Soghaier MA; Abubakr M; Osman HA; Abd Elrhman LS; Elmagbol B; Velayudhan R
    East Mediterr Health J; 2012 Dec; 18(12):1217-24. PubMed ID: 23301396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling the transmission dynamics of dengue in the presence of Wolbachia.
    Ndii MZ; Hickson RI; Allingham D; Mercer GN
    Math Biosci; 2015 Apr; 262():157-66. PubMed ID: 25645184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The prevention of dengue in Guadeloupe].
    Gustave J
    Bull Soc Pathol Exot; 1996; 89(2):143-4. PubMed ID: 8924773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using bacteria to treat diseases.
    Caragata EP; Walker T
    Expert Opin Biol Ther; 2012 Jun; 12(6):701-12. PubMed ID: 22500583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of a dengue disease transmission model.
    Esteva L; Vargas C
    Math Biosci; 1998 Jun; 150(2):131-51. PubMed ID: 9656647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing dengue transmission risk and a vector control intervention using entomological and immunological indices in Thailand: study protocol for a cluster-randomized controlled trial.
    Overgaard HJ; Pientong C; Thaewnongiew K; Bangs MJ; Ekalaksananan T; Aromseree S; Phanitchat T; Phanthanawiboon S; Fustec B; Corbel V; Cerqueira D; Alexander N
    Trials; 2018 Feb; 19(1):122. PubMed ID: 29458406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [A mathematical model for the chemical control of Aedes aegypti (Diptera: Culicidae) having acquired chemical resistance].
    Restrepo-Alape LD; Toro-Zapata HD; Muñoz-Loaiza A
    Rev Salud Publica (Bogota); 2010 Dec; 12(6):1033-41. PubMed ID: 22030690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Classical dengue transmission dynamics involving mechanical control and prophylaxis].
    Toro-Zapata HD; Restrepo LD; Vergaño-Salazar JG; Muñoz-Loaiza A
    Rev Salud Publica (Bogota); 2010 Dec; 12(6):1020-32. PubMed ID: 22030689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An SIR-Dengue transmission model with seasonal effects and impulsive control.
    Páez Chávez J; Götz T; Siegmund S; Wijaya KP
    Math Biosci; 2017 Jul; 289():29-39. PubMed ID: 28434995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergency vector control in a DENV-2 outbreak in 2002 in Pingtung City, Pingtung County, Taiwan.
    Teng HJ; Chen TJ; Tsai SF; Lin CP; Chiou HY; Lin MC; Yang SY; Lee YW; Kang CC; Hsu HC; Chang NT
    Jpn J Infect Dis; 2007 Sep; 60(5):271-9. PubMed ID: 17881866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased efficiency in the second-hand tire trade provides opportunity for dengue control.
    Pliego Pliego E; Velázquez-Castro J; Eichhorn MP; Fraguela Collar A
    J Theor Biol; 2018 Jan; 437():126-136. PubMed ID: 29079324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transmission thresholds for dengue in terms of Aedes aegypti pupae per person with discussion of their utility in source reduction efforts.
    Focks DA; Brenner RJ; Hayes J; Daniels E
    Am J Trop Med Hyg; 2000 Jan; 62(1):11-8. PubMed ID: 10761719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.