BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 24619807)

  • 21. The economic impact and cost-effectiveness of combined vector-control and dengue vaccination strategies in Thailand: results from a dynamic transmission model.
    Knerer G; Currie CSM; Brailsford SC
    PLoS Negl Trop Dis; 2020 Oct; 14(10):e0008805. PubMed ID: 33095791
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modelling an optimum vaccination strategy against ZIKA virus for outbreak use.
    Massad E; Coutinho FAB; Wilder-Smith A
    Epidemiol Infect; 2019 Jan; 147():e196. PubMed ID: 31364534
    [TBL] [Abstract][Full Text] [Related]  

  • 23.
    Chesnut M; Muñoz LS; Harris G; Freeman D; Gama L; Pardo CA; Pamies D
    Front Cell Infect Microbiol; 2019; 9():223. PubMed ID: 31338335
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling the spreading and interaction between wild and transgenic mosquitoes with a random dispersal.
    Wyse AP; Santos AJBD; Azevedo JDS; Lima JS; Faria JR
    PLoS One; 2018; 13(10):e0205879. PubMed ID: 30379965
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimating the size of
    Massad E; Amaku M; Coutinho FAB; Struchiner CJ; Lopez LF; Wilder-Smith A; Burattini MN
    Infect Dis Model; 2017 Nov; 2(4):441-454. PubMed ID: 30137722
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Note on the Risk of Infections Invading Unaffected Regions.
    Amaku M; Coutinho FAB; Armstrong M; Massad E
    Comput Math Methods Med; 2018; 2018():6289681. PubMed ID: 30073032
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimating the probability of dengue virus introduction and secondary autochthonous cases in Europe.
    Massad E; Amaku M; Coutinho FAB; Struchiner CJ; Burattini MN; Khan K; Liu-Helmersson J; Rocklöv J; Kraemer MUG; Wilder-Smith A
    Sci Rep; 2018 Mar; 8(1):4629. PubMed ID: 29545610
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficacies of prevention and control measures applied during an outbreak in Southwest Madrid, Spain.
    Sevá ADP; Martcheva M; Tuncer N; Fontana I; Carrillo E; Moreno J; Keesling J
    PLoS One; 2017; 12(10):e0186372. PubMed ID: 29028841
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Public Health Interventions for Aedes Control in the Time of Zikavirus- A Meta-Review on Effectiveness of Vector Control Strategies.
    Bouzid M; Brainard J; Hooper L; Hunter PR
    PLoS Negl Trop Dis; 2016 Dec; 10(12):e0005176. PubMed ID: 27926934
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Driving Force for 2014 Dengue Outbreak in Guangdong, China.
    Li MT; Sun GQ; Yakob L; Zhu HP; Jin Z; Zhang WY
    PLoS One; 2016; 11(11):e0166211. PubMed ID: 27861514
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnitude and frequency variations of vector-borne infection outbreaks using the Ross-Macdonald model: explaining and predicting outbreaks of dengue fever.
    Amaku M; Azevedo F; Burattini MN; Coelho GE; Coutinho FAB; Greenhalgh D; Lopez LF; Motitsuki RS; Wilder-Smith A; Massad E
    Epidemiol Infect; 2016 Dec; 144(16):3435-3450. PubMed ID: 27538702
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Equilibrium analysis of a yellow Fever dynamical model with vaccination.
    Martorano Raimundo S; Amaku M; Massad E
    Comput Math Methods Med; 2015; 2015():482091. PubMed ID: 25834634
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interpretations and pitfalls in modelling vector-transmitted infections.
    Amaku M; Azevedo F; Burattini MN; Coutinho FA; Lopez LF; Massad E
    Epidemiol Infect; 2015 Jul; 143(9):1803-15. PubMed ID: 25417817
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Maximum equilibrium prevalence of mosquito-borne microparasite infections in humans.
    Amaku M; Burattini MN; Coutinho FA; Lopez LF; Massad E
    Comput Math Methods Med; 2013; 2013():659038. PubMed ID: 24454539
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of combined vector-control and vaccination strategies on transmission dynamics of dengue fever: a model-based analysis.
    Knerer G; Currie CS; Brailsford SC
    Health Care Manag Sci; 2015 Jun; 18(2):205-17. PubMed ID: 24370922
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparative analysis of the relative efficacy of vector-control strategies against dengue fever.
    Amaku M; Coutinho FA; Raimundo SM; Lopez LF; Nascimento Burattini M; Massad E
    Bull Math Biol; 2014 Mar; 76(3):697-717. PubMed ID: 24619807
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Follow up estimation of Aedes aegypti entomological parameters and mathematical modellings.
    Yang HM; Macoris Mde L; Galvani KC; Andrighetti MT
    Biosystems; 2011 Mar; 103(3):360-71. PubMed ID: 21093536
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A multiobjective optimization approach for combating Aedes aegypti using chemical and biological alternated step-size control.
    Dias WO; Wanner EF; Cardoso RT
    Math Biosci; 2015 Nov; 269():37-47. PubMed ID: 26362231
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An optimal control problem arising from a dengue disease transmission model.
    Aldila D; Götz T; Soewono E
    Math Biosci; 2013 Mar; 242(1):9-16. PubMed ID: 23274179
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using bacteria to treat diseases.
    Caragata EP; Walker T
    Expert Opin Biol Ther; 2012 Jun; 12(6):701-12. PubMed ID: 22500583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.