These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 2462056)

  • 1. Site-directed mutagenesis of Escherichia coli 23 S ribosomal RNA at position 1067 within the GTP hydrolysis centre.
    Thompson J; Cundliffe E; Dahlberg AE
    J Mol Biol; 1988 Sep; 203(2):457-65. PubMed ID: 2462056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Replacement of the L11 binding region within E.coli 23S ribosomal RNA with its homologue from yeast: in vivo and in vitro analysis of hybrid ribosomes altered in the GTPase centre.
    Thompson J; Musters W; Cundliffe E; Dahlberg AE
    EMBO J; 1993 Apr; 12(4):1499-504. PubMed ID: 7682175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The binding of thiostrepton to 23S ribosomal RNA.
    Thompson J; Cundliffe E
    Biochimie; 1991; 73(7-8):1131-5. PubMed ID: 1720665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The antibiotic thiostrepton inhibits a functional transition within protein L11 at the ribosomal GTPase centre.
    Porse BT; Leviev I; Mankin AS; Garrett RA
    J Mol Biol; 1998 Feb; 276(2):391-404. PubMed ID: 9512711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel mutants of 23S RNA: characterization of functional properties.
    Saarma U; Remme J
    Nucleic Acids Res; 1992 Jun; 20(12):3147-52. PubMed ID: 1377819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A base substitution within the GTPase-associated domain of mammalian 28 S ribosomal RNA causes high thiostrepton accessibility.
    Uchiumi T; Wada A; Kominami R
    J Biol Chem; 1995 Dec; 270(50):29889-93. PubMed ID: 8530386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies of the GTPase domain of archaebacterial ribosomes.
    Beauclerk AA; Hummel H; Holmes DJ; Böck A; Cundliffe E
    Eur J Biochem; 1985 Sep; 151(2):245-55. PubMed ID: 2411554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ribosomal proteins L11 and L10.(L12)4 and the antibiotic thiostrepton interact with overlapping regions of the 23 S rRNA backbone in the ribosomal GTPase centre.
    Rosendahl G; Douthwaite S
    J Mol Biol; 1993 Dec; 234(4):1013-20. PubMed ID: 8263910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antibiotic interactions at the GTPase-associated centre within Escherichia coli 23S rRNA.
    Egebjerg J; Douthwaite S; Garrett RA
    EMBO J; 1989 Feb; 8(2):607-11. PubMed ID: 2470587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The antibiotic micrococcin acts on protein L11 at the ribosomal GTPase centre.
    Porse BT; Cundliffe E; Garrett RA
    J Mol Biol; 1999 Mar; 287(1):33-45. PubMed ID: 10074405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutations at position A960 of E. coli 23 S ribosomal RNA influence the structure of 5 S ribosomal RNA and the peptidyltransferase region of 23 S ribosomal RNA.
    Sergiev PV; Bogdanov AA; Dahlberg AE; Dontsova O
    J Mol Biol; 2000 Jun; 299(2):379-89. PubMed ID: 10860746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of a key tertiary interaction in the highly conserved GTPase center of large subunit ribosomal RNA.
    Ryan PC; Draper DE
    Proc Natl Acad Sci U S A; 1991 Jul; 88(14):6308-12. PubMed ID: 2068110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling of rRNA transcription and ribosomal assembly in vivo. Formation of active ribosomal subunits in Escherichia coli requires transcription of rRNA genes by host RNA polymerase which cannot be replaced by bacteriophage T7 RNA polymerase.
    Lewicki BT; Margus T; Remme J; Nierhaus KH
    J Mol Biol; 1993 Jun; 231(3):581-93. PubMed ID: 8515441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of the thiostrepton-resistance gene from Streptomyces azureus in Escherichia coli and characterization of recognition sites of the 23S rRNA A1067 2'-methyltransferase in the guanosine triphosphatase center of 23S ribosomal RNA.
    Bechthold A; Floss HG
    Eur J Biochem; 1994 Sep; 224(2):431-7. PubMed ID: 7925357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition of the highly conserved GTPase center of 23 S ribosomal RNA by ribosomal protein L11 and the antibiotic thiostrepton.
    Ryan PC; Lu M; Draper DE
    J Mol Biol; 1991 Oct; 221(4):1257-68. PubMed ID: 1942050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Affinity purification of ribosomes with a lethal G2655C mutation in 23 S rRNA that affects the translocation.
    Leonov AA; Sergiev PV; Bogdanov AA; Brimacombe R; Dontsova OA
    J Biol Chem; 2003 Jul; 278(28):25664-70. PubMed ID: 12730236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Initiation factor IF2, thiostrepton and micrococcin prevent the binding of elongation factor G to the Escherichia coli ribosome.
    Cameron DM; Thompson J; March PE; Dahlberg AE
    J Mol Biol; 2002 May; 319(1):27-35. PubMed ID: 12051934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific structural probing of plasmid-coded ribosomal RNAs from Escherichia coli.
    Aagaard C; Rosendahl G; Dam M; Powers T; Douthwaite S
    Biochimie; 1991 Dec; 73(12):1439-44. PubMed ID: 1725257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The phenotype of mutations of the base-pair C2658.G2663 that closes the tetraloop in the sarcin/ricin domain of Escherichia coli 23 S ribosomal RNA.
    Chan YL; Sitikov AS; Wool IG
    J Mol Biol; 2000 May; 298(5):795-805. PubMed ID: 10801349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ribosome-in-pieces: binding of elongation factor EF-G to oligoribonucleotides that mimic the sarcin/ricin and thiostrepton domains of 23S ribosomal RNA.
    Munishkin A; Wool IG
    Proc Natl Acad Sci U S A; 1997 Nov; 94(23):12280-4. PubMed ID: 9356440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.