These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
458 related articles for article (PubMed ID: 24620851)
1. Molecular dynamics simulations of sodium dodecyl sulfate micelles in water-the effect of the force field. Tang X; Koenig PH; Larson RG J Phys Chem B; 2014 Apr; 118(14):3864-80. PubMed ID: 24620851 [TBL] [Abstract][Full Text] [Related]
2. Free energy profiles for penetration of methane and water molecules into spherical sodium dodecyl sulfate micelles obtained using the thermodynamic integration method combined with molecular dynamics calculations. Fujimoto K; Yoshii N; Okazaki S J Chem Phys; 2012 Jan; 136(1):014511. PubMed ID: 22239793 [TBL] [Abstract][Full Text] [Related]
3. Role of counterion condensation in the self-assembly of SDS surfactants at the water-graphite interface. Tummala NR; Striolo A J Phys Chem B; 2008 Feb; 112(7):1987-2000. PubMed ID: 18229918 [TBL] [Abstract][Full Text] [Related]
4. Ionic surfactant aggregates in saline solutions: sodium dodecyl sulfate (SDS) in the presence of excess sodium chloride (NaCl) or calcium chloride (CaCl(2)). Sammalkorpi M; Karttunen M; Haataja M J Phys Chem B; 2009 Apr; 113(17):5863-70. PubMed ID: 19344100 [TBL] [Abstract][Full Text] [Related]
5. Molecular dynamics study of micelles properties according to their size. Lebecque S; Crowet JM; Nasir MN; Deleu M; Lins L J Mol Graph Model; 2017 Mar; 72():6-15. PubMed ID: 27992815 [TBL] [Abstract][Full Text] [Related]
6. A molecular dynamics study of free energy of micelle formation for sodium dodecyl sulfate in water and its size distribution. Yoshii N; Iwahashi K; Okazaki S J Chem Phys; 2006 May; 124(18):184901. PubMed ID: 16709133 [TBL] [Abstract][Full Text] [Related]
7. Assessment of biomolecular force fields for molecular dynamics simulations in a protein crystal. Hu Z; Jiang J J Comput Chem; 2010 Jan; 31(2):371-80. PubMed ID: 19479737 [TBL] [Abstract][Full Text] [Related]
8. Structural properties of ionic detergent aggregates: a large-scale molecular dynamics study of sodium dodecyl sulfate. Sammalkorpi M; Karttunen M; Haataja M J Phys Chem B; 2007 Oct; 111(40):11722-33. PubMed ID: 17877384 [TBL] [Abstract][Full Text] [Related]
9. Micelles in mixtures of sodium dodecyl sulfate and a bolaform surfactant. Muzzalupo R; Gente G; La Mesa C; Caponetti E; Chillura-Martino D; Pedone L; Saladino ML Langmuir; 2006 Jul; 22(14):6001-9. PubMed ID: 16800652 [TBL] [Abstract][Full Text] [Related]
10. Combining precision spin-probe partitioning with time-resolved fluorescence quenching to study micelles. Application to micelles of pure lysomyristoylphosphatidylcholine (LMPC) and LMPC mixed with sodium dodecyl sulfate. Peric M; Alves M; Bales BL Chem Phys Lipids; 2006 Jul; 142(1-2):1-13. PubMed ID: 16569402 [TBL] [Abstract][Full Text] [Related]
11. Solubilization in mixed micelles studied by molecular dynamics simulations and COSMOmic. Storm S; Jakobtorweihen S; Smirnova I J Phys Chem B; 2014 Apr; 118(13):3593-604. PubMed ID: 24533791 [TBL] [Abstract][Full Text] [Related]
12. New Force Field Parameters for the Sodium Dodecyl Sulfate and Alpha Olefin Sulfonate Anionic Surfactants. Ríos-López M; Mendez-Bermúdez JG; Domínguez H J Phys Chem B; 2018 Apr; 122(16):4558-4565. PubMed ID: 29613796 [TBL] [Abstract][Full Text] [Related]
13. Atomistic description of the solubilisation of testosterone propionate in a sodium dodecyl sulfate micelle. Allen DT; Saaka Y; Lawrence MJ; Lorenz CD J Phys Chem B; 2014 Nov; 118(46):13192-201. PubMed ID: 25343221 [TBL] [Abstract][Full Text] [Related]
14. Specific ion effects on the self-assembly of ionic surfactants: a molecular thermodynamic theory of micellization with dispersion forces. Lukanov B; Firoozabadi A Langmuir; 2014 Jun; 30(22):6373-83. PubMed ID: 24832546 [TBL] [Abstract][Full Text] [Related]
15. Counter-ion adsorption and electrostatic potential in sodium and choline dodecyl sulfate micelles - a molecular dynamics simulation study. Eliasquevici R; Bernardino K J Mol Model; 2024 Mar; 30(4):101. PubMed ID: 38467947 [TBL] [Abstract][Full Text] [Related]
16. Accurate modeling of ionic surfactants at high concentration. Goh GB; Eike DM; Murch BP; Brooks CL J Phys Chem B; 2015 May; 119(20):6217-24. PubMed ID: 25913469 [TBL] [Abstract][Full Text] [Related]
17. Study of the Alzheimer's Aβ40 peptide in SDS micelles using molecular dynamics simulations. Jalili S; Akhavan M Biophys Chem; 2011 Jan; 153(2-3):179-86. PubMed ID: 21183271 [TBL] [Abstract][Full Text] [Related]
18. Prediction of micelle/water and liposome/water partition coefficients based on molecular dynamics simulations, COSMO-RS, and COSMOmic. Ingram T; Storm S; Kloss L; Mehling T; Jakobtorweihen S; Smirnova I Langmuir; 2013 Mar; 29(11):3527-37. PubMed ID: 23398189 [TBL] [Abstract][Full Text] [Related]
19. Revisiting OPLS-AA Force Field for the Simulation of Anionic Surfactants in Concentrated Electrolyte Solutions. Abdel-Azeim S J Chem Theory Comput; 2020 Feb; 16(2):1136-1145. PubMed ID: 31904948 [TBL] [Abstract][Full Text] [Related]
20. Controlling the conformation of oligocholate foldamers by surfactant micelles. Zhong Z; Zhao Y J Org Chem; 2008 Jul; 73(14):5498-505. PubMed ID: 18572966 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]