These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 24620996)

  • 1. Simultaneously high stiffness and damping in nanoengineered microtruss composites.
    Meaud J; Sain T; Yeom B; Park SJ; Shoultz AB; Hulbert G; Ma ZD; Kotov NA; Hart AJ; Arruda EM; Waas AM
    ACS Nano; 2014 Apr; 8(4):3468-75. PubMed ID: 24620996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid carbon fiber/carbon nanotube composites for structural damping applications.
    Tehrani M; Safdari M; Boroujeni AY; Razavi Z; Case SW; Dahmen K; Garmestani H; Al-Haik MS
    Nanotechnology; 2013 Apr; 24(15):155704. PubMed ID: 23518871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscoelasticity in carbon nanotube composites.
    Suhr J; Koratkar N; Keblinski P; Ajayan P
    Nat Mater; 2005 Feb; 4(2):134-7. PubMed ID: 15640807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of energy dissipation mechanisms in CNT-reinforced nanocomposites.
    Gardea F; Glaz B; Riddick J; Lagoudas DC; Naraghi M
    Nanotechnology; 2016 Mar; 27(10):105707. PubMed ID: 26866611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiparameter structural optimization of single-walled carbon nanotube composites: toward record strength, stiffness, and toughness.
    Shim BS; Zhu J; Jan E; Critchley K; Ho S; Podsiadlo P; Sun K; Kotov NA
    ACS Nano; 2009 Jul; 3(7):1711-22. PubMed ID: 19591447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manufacturing polymer/carbon nanotube composite using a novel direct process.
    Tran CD; Lucas S; Phillips DG; Randeniya LK; Baughman RH; Tran-Cong T
    Nanotechnology; 2011 Apr; 22(14):145302. PubMed ID: 21346301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extreme damping in composite materials with negative-stiffness inclusions.
    Lakes RS; Lee T; Bersie A; Wang YC
    Nature; 2001 Mar; 410(6828):565-7. PubMed ID: 11279490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concurrent Topology Optimization of Composite Plates for Minimum Dynamic Compliance.
    Zhang H; Ding X; Ni W; Chen Y; Zhang X; Li H
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifunctional composites using reinforced laminae with carbon-nanotube forests.
    Veedu VP; Cao A; Li X; Ma K; Soldano C; Kar S; Ajayan PM; Ghasemi-Nejhad MN
    Nat Mater; 2006 Jun; 5(6):457-62. PubMed ID: 16680146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanocomposite microstructures with tunable mechanical and chemical properties.
    Tawfick S; Deng X; Hart AJ; Lahann J
    Phys Chem Chem Phys; 2010 May; 12(17):4446-51. PubMed ID: 20407718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy dissipation due to interfacial slip in nanocomposites reinforced with aligned carbon nanotubes.
    Gardea F; Glaz B; Riddick J; Lagoudas DC; Naraghi M
    ACS Appl Mater Interfaces; 2015 May; 7(18):9725-35. PubMed ID: 25905718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extreme damping in composite materials with a negative stiffness phase.
    Lakes RS
    Phys Rev Lett; 2001 Mar; 86(13):2897-900. PubMed ID: 11290067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibration and damping characteristics of 3D printed Kagome lattice with viscoelastic material filling.
    Wang R; Shang J; Li X; Luo Z; Wu W
    Sci Rep; 2018 Jun; 8(1):9604. PubMed ID: 29942030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic Performance of Laminated High-Damping and High-Stiffness Composite Structure Composed of Metal Rubber and Silicone Rubber.
    Zheng X; Ren Z; Shen L; Zhang B; Bai H
    Materials (Basel); 2021 Jan; 14(1):. PubMed ID: 33401716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and reinforcement: vertically aligned carbon nanotube-based sandwich composites.
    Zeng Y; Ci L; Carey BJ; Vajtai R; Ajayan PM
    ACS Nano; 2010 Nov; 4(11):6798-804. PubMed ID: 20958076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of pre-strain on interfacial friction damping in carbon nanotube polymer composites.
    Suhr J; Koratkar N
    J Nanosci Nanotechnol; 2006 Feb; 6(2):483-6. PubMed ID: 16573048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental Study on the Effectiveness of Polyurethane Flexible Adhesive in Reduction of Structural Vibrations.
    Lasowicz N; KwiecieĊ„ A; Jankowski R
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33076343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Escaping the Ashby limit for mechanical damping/stiffness trade-off using a constrained high internal friction interfacial layer.
    Unwin AP; Hine PJ; Ward IM; Fujita M; Tanaka E; Gusev AA
    Sci Rep; 2018 Feb; 8(1):2454. PubMed ID: 29410460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical multifunctional composites by conformally coating aligned carbon nanotube arrays with conducting polymer.
    Vaddiraju S; Cebeci H; Gleason KK; Wardle BL
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2565-72. PubMed ID: 20356128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale damping characteristics of boron nitride nanotubes and carbon nanotubes reinforced polymer composites.
    Agrawal R; Nieto A; Chen H; Mora M; Agarwal A
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):12052-7. PubMed ID: 24236402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.