These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 24621008)

  • 41. Identification and Self-Reaction Kinetics of Criegee Intermediates syn-CH
    Luo PL; Endo Y; Lee YP
    J Phys Chem Lett; 2018 Aug; 9(15):4391-4395. PubMed ID: 30024766
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Solving the discrepancy between the direct and relative-rate determinations of unimolecular reaction kinetics of dimethyl-substituted Criegee intermediate (CH
    Peltola J; Seal P; Vuorio N; Heinonen P; Eskola A
    Phys Chem Chem Phys; 2022 Feb; 24(8):5211-5219. PubMed ID: 35167635
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Absolute photoionization cross-section of the methyl radical.
    Taatjes CA; Osborn DL; Selby TM; Meloni G; Fan H; Pratt ST
    J Phys Chem A; 2008 Oct; 112(39):9336-43. PubMed ID: 18572896
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Theoretical study of the reaction mechanism between Criegee intermediates and hydroxyl radicals in the presence of ammonia and amine.
    Wei Y; Xu F; Ma X; Li L; Wang W; Huo X; Zhang Q; Wang W
    Chemosphere; 2022 Jan; 287(Pt 1):131877. PubMed ID: 34523463
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Unimolecular decomposition rates of a methyl-substituted Criegee intermediate
    Li YL; Kuo MT; Lin JJ
    RSC Adv; 2020 Feb; 10(14):8518-8524. PubMed ID: 35497839
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Direct observation of OH formation from stabilised Criegee intermediates.
    Novelli A; Vereecken L; Lelieveld J; Harder H
    Phys Chem Chem Phys; 2014 Oct; 16(37):19941-51. PubMed ID: 25119645
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Two Pathways for Dissociation of Highly Energized syn-CH3CHOO to OH Plus Vinoxy.
    Wang X; Bowman JM
    J Phys Chem Lett; 2016 Sep; 7(17):3359-64. PubMed ID: 27513186
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electronic Spectroscopy and Dissociation Dynamics of Vinyl-Substituted Criegee Intermediates: 2-Butenal Oxide and Comparison with Methyl Vinyl Ketone Oxide and Methacrolein Oxide Isomers.
    Wang G; Liu T; Zou M; Sojdak CA; Kozlowski MC; Karsili TNV; Lester MI
    J Phys Chem A; 2023 Jan; 127(1):203-215. PubMed ID: 36574960
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Unimolecular reaction of acetone oxide and its reaction with water in the atmosphere.
    Long B; Bao JL; Truhlar DG
    Proc Natl Acad Sci U S A; 2018 Jun; 115(24):6135-6140. PubMed ID: 29844185
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Substituent effects on the spectroscopic properties of Criegee intermediates.
    Trabelsi T; Kumar M; Francisco JS
    J Chem Phys; 2017 Oct; 147(16):164303. PubMed ID: 29096470
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Photodissociation dynamics of methyl vinyl ketone oxide: A four-carbon unsaturated Criegee intermediate from isoprene ozonolysis.
    Wang G; Liu T; Caracciolo A; Vansco MF; Trongsiriwat N; Walsh PJ; Marchetti B; Karsili TNV; Lester MI
    J Chem Phys; 2021 Nov; 155(17):174305. PubMed ID: 34742186
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High resolution absolute absorption cross sections of the B ̃(1)A'-X ̃(1)A' transition of the CH2OO biradical.
    Foreman ES; Kapnas KM; Jou Y; Kalinowski J; Feng D; Gerber RB; Murray C
    Phys Chem Chem Phys; 2015 Dec; 17(48):32539-46. PubMed ID: 26595457
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fourier-transform microwave spectroscopy of dimethyl-substituted Criegee intermediate (CH
    Nakajima M; Endo Y
    J Chem Phys; 2016 Dec; 145(24):244307. PubMed ID: 28049337
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Direct kinetic measurements and theoretical predictions of an isoprene-derived Criegee intermediate.
    Caravan RL; Vansco MF; Au K; Khan MAH; Li YL; Winiberg FAF; Zuraski K; Lin YH; Chao W; Trongsiriwat N; Walsh PJ; Osborn DL; Percival CJ; Lin JJ; Shallcross DE; Sheps L; Klippenstein SJ; Taatjes CA; Lester MI
    Proc Natl Acad Sci U S A; 2020 May; 117(18):9733-9740. PubMed ID: 32321826
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Direct measurement of Criegee intermediate (CH2OO) reactions with acetone, acetaldehyde, and hexafluoroacetone.
    Taatjes CA; Welz O; Eskola AJ; Savee JD; Osborn DL; Lee EP; Dyke JM; Mok DW; Shallcross DE; Percival CJ
    Phys Chem Chem Phys; 2012 Aug; 14(30):10391-400. PubMed ID: 22481381
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Near-UV photolysis of substituted phenols, I: 4-fluoro-, 4-chloro- and 4-bromophenol.
    Devine AL; Nix MG; Cronin B; Ashfold MN
    Phys Chem Chem Phys; 2007 Jul; 9(28):3749-62. PubMed ID: 17622410
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electronic Absorption Spectroscopy and Photochemistry of Criegee Intermediates.
    Karsili TNV; Marchetti B; Lester MI; Ashfold MNR
    Photochem Photobiol; 2023 Jan; 99(1):4-18. PubMed ID: 35713380
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Infrared identification of the Criegee intermediates syn- and anti-CH₃CHOO, and their distinct conformation-dependent reactivity.
    Lin HY; Huang YH; Wang X; Bowman JM; Nishimura Y; Witek HA; Lee YP
    Nat Commun; 2015 May; 6():7012. PubMed ID: 25959902
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanism of Gas-Phase Ozonolysis of β-Myrcene in the Atmosphere.
    Deng P; Wang L; Wang L
    J Phys Chem A; 2018 Mar; 122(11):3013-3020. PubMed ID: 29509421
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The UV absorption spectrum of the simplest Criegee intermediate CH2OO.
    Ting WL; Chen YH; Chao W; Smith MC; Lin JJ
    Phys Chem Chem Phys; 2014 Jun; 16(22):10438-43. PubMed ID: 24763437
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.