These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 24621077)

  • 21. Preparation and characterization of gelatin hydrogel support for immobilization of Candida rugosa lipase.
    Pulat M; Akalin GO
    Artif Cells Nanomed Biotechnol; 2013 Jun; 41(3):145-51. PubMed ID: 22812721
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermo-responsive hydrogels with N-isopropylacrylamide/acrylamide interpenetrating networks for controlled drug release.
    Jiang Y; Wu Y; Huo Y
    J Biomater Sci Polym Ed; 2015; 26(14):917-30. PubMed ID: 26146984
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Controlled release of 5-aminosalicylicacid from chitosan based pH and temperature sensitive hydrogels.
    Bostan MS; Senol M; Cig T; Peker I; Goren AC; Ozturk T; Eroglu MS
    Int J Biol Macromol; 2013 Jan; 52():177-83. PubMed ID: 23041667
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermo-sensitive chitosan based semi-IPN hydrogels for high loading and sustained release of anionic drugs.
    Li G; Guo L; Chang X; Yang M
    Int J Biol Macromol; 2012 May; 50(4):899-904. PubMed ID: 22679630
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hemoglobin recognition by imprinting in semi-interpenetrating polymer network hydrogel based on polyacrylamide and chitosan.
    Xia YQ; Guo TY; Song MD; Zhang BH; Zhang BL
    Biomacromolecules; 2005; 6(5):2601-6. PubMed ID: 16153097
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interpenetrating Polymer Networks polysaccharide hydrogels for drug delivery and tissue engineering.
    Matricardi P; Di Meo C; Coviello T; Hennink WE; Alhaique F
    Adv Drug Deliv Rev; 2013 Aug; 65(9):1172-87. PubMed ID: 23603210
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Superporous hydrogels containing poly(acrylic acid-co-acrylamide)/O-carboxymethyl chitosan interpenetrating polymer networks.
    Yin L; Fei L; Cui F; Tang C; Yin C
    Biomaterials; 2007 Feb; 28(6):1258-66. PubMed ID: 17118443
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of oxidized glycerol monooleate-chitosan polymer and its hydrogel formation for sustained release of trimetazidine hydrochloride.
    Zhang J; Fu M; Zhang M; Xu L; Gao Y
    Int J Pharm; 2014 Apr; 465(1-2):32-41. PubMed ID: 24508554
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lipase immobilization into porous chitoxan beads: activities in aqueous and organic media and lipase localization.
    Magnin D; Dumitriu S; Magny P; Chornet E
    Biotechnol Prog; 2001; 17(4):734-7. PubMed ID: 11485436
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Poly (lactic acid)/chitosan fiber mats: investigation of effects of the support on lipase immobilization.
    Siqueira NM; Garcia KC; Bussamara R; Both FS; Vainstein MH; Soares RM
    Int J Biol Macromol; 2015 Jan; 72():998-1004. PubMed ID: 25290984
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation of polyphosphazene hydrogels for enzyme immobilization.
    Qian YC; Chen PC; He GJ; Huang XJ; Xu ZK
    Molecules; 2014 Jul; 19(7):9850-63. PubMed ID: 25006790
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Binary immobilization of tyrosinase by using alginate gel beads and poly(acrylamide-co-acrylic acid) hydrogels.
    Yahşi A; Sahin F; Demirel G; Tümtürk H
    Int J Biol Macromol; 2005 Sep; 36(4):253-8. PubMed ID: 16085306
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chitosan-based hydrogels for controlled, localized drug delivery.
    Bhattarai N; Gunn J; Zhang M
    Adv Drug Deliv Rev; 2010 Jan; 62(1):83-99. PubMed ID: 19799949
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous interpenetrating silicone hydrogel based on radical/addition polymerization for extended release of ocular therapeutics.
    Xu J; Zhang L; Zhang Y; Li T; Huo G
    J Biomater Sci Polym Ed; 2014; 25(2):121-35. PubMed ID: 24083662
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biochemical and kinetic study of laccase from Ganoderma cupreum AG-1 in hydrogels.
    Gahlout M; Gupte S; Gupte A
    Appl Biochem Biotechnol; 2014 May; 173(1):215-27. PubMed ID: 24740356
    [TBL] [Abstract][Full Text] [Related]  

  • 36. pH-sensitive interpenetrating network hydrogels based on chitosan derivatives and alginate for oral drug delivery.
    Yang J; Chen J; Pan D; Wan Y; Wang Z
    Carbohydr Polym; 2013 Jan; 92(1):719-25. PubMed ID: 23218359
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiresponsive macroporous semi-IPN composite hydrogels based on native or anionically modified potato starch.
    Dragan ES; Apopei DF
    Carbohydr Polym; 2013 Jan; 92(1):23-32. PubMed ID: 23218261
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel interpenetrating network chitosan-poly(ethylene oxide-g-acrylamide) hydrogel microspheres for the controlled release of capecitabine.
    Agnihotri SA; Aminabhavi TM
    Int J Pharm; 2006 Nov; 324(2):103-15. PubMed ID: 16824710
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of two novel bio-based hydrogels using sodium alginate and chitosan and their proficiency in physical immobilization of enzymes.
    Shakeri F; Ariaeenejad S; Ghollasi M; Motamedi E
    Sci Rep; 2022 Feb; 12(1):2072. PubMed ID: 35136126
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis, characterization and controlled drug release of thermosensitive IPN-PNIPAAm hydrogels.
    Zhang XZ; Wu DQ; Chu CC
    Biomaterials; 2004 Aug; 25(17):3793-805. PubMed ID: 15020155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.