These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 24621106)

  • 1. Densified electrochemical sensors based on local redox cycling between vertically separated electrodes in substrate generation/chip collection and extended feedback modes.
    Ino K; Kanno Y; Nishijo T; Komaki H; Yamada Y; Yoshida S; Takahashi Y; Shiku H; Matsue T
    Anal Chem; 2014 Apr; 86(8):4016-23. PubMed ID: 24621106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Droplet array on local redox cycling-based electrochemical (LRC-EC) chip device.
    Ino K; Goto T; Kanno Y; Inoue KY; Takahashi Y; Shiku H; Matsue T
    Lab Chip; 2014 Feb; 14(4):787-94. PubMed ID: 24356747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A local redox cycling-based electrochemical chip device with nanocavities for multi-electrochemical evaluation of embryoid bodies.
    Kanno Y; Ino K; Shiku H; Matsue T
    Lab Chip; 2015 Dec; 15(23):4404-14. PubMed ID: 26481771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local redox-cycling-based electrochemical chip device with deep microwells for evaluation of embryoid bodies.
    Ino K; Nishijo T; Arai T; Kanno Y; Takahashi Y; Shiku H; Matsue T
    Angew Chem Int Ed Engl; 2012 Jul; 51(27):6648-52. PubMed ID: 22639109
    [No Abstract]   [Full Text] [Related]  

  • 5. Accumulation and detection of secreted proteins from single cells for reporter gene assays using a local redox cycling-based electrochemical (LRC-EC) chip device.
    Sen M; Ino K; Shiku H; Matsue T
    Lab Chip; 2012 Nov; 12(21):4328-35. PubMed ID: 22941152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical detection for dynamic analyses of a redox component in droplets using a local redox cycling-based electrochemical (LRC-EC) chip device.
    Ino K; Kanno Y; Nishijo T; Goto T; Arai T; Takahashi Y; Shiku H; Matsue T
    Chem Commun (Camb); 2012 Sep; 48(68):8505-7. PubMed ID: 22810361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation Analysis of Positional Relationship between Embryoid Bodies and Sensors on an LSI-based Amperometric Device for Electrochemical Imaging of Alkaline Phosphatase Activity.
    Kanno Y; Ino K; Inoue KY; Suda A; Kunikata R; Matsudaira M; Shiku H; Matsue T
    Anal Sci; 2015; 31(7):715-9. PubMed ID: 26165297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An addressable microelectrode array for electrochemical detection.
    Lin Z; Takahashi Y; Kitagawa Y; Umemura T; Shiku H; Matsue T
    Anal Chem; 2008 Sep; 80(17):6830-3. PubMed ID: 18665613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical monitoring of hydrogen peroxide released from leucocytes on horseradish peroxidase redox polymer coated electrode chip.
    Inoue KY; Ino K; Shiku H; Kasai S; Yasukawa T; Mizutani F; Matsue T
    Biosens Bioelectron; 2010 Mar; 25(7):1723-8. PubMed ID: 20060284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "Outer-sphere to inner-sphere" redox cycling for ultrasensitive immunosensors.
    Akanda MR; Choe YL; Yang H
    Anal Chem; 2012 Jan; 84(2):1049-55. PubMed ID: 22208164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potentiometric bioimaging with a large-scale integration (LSI)-based electrochemical device for detection of enzyme activity.
    Kanno Y; Ino K; Sakamoto C; Inoue KY; Matsudaira M; Suda A; Kunikata R; Ishikawa T; Abe H; Shiku H; Matsue T
    Biosens Bioelectron; 2016 Mar; 77():709-14. PubMed ID: 26499066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LSI-based amperometric sensor for real-time monitoring of embryoid bodies.
    Sen M; Ino K; Inoue KY; Arai T; Nishijo T; Suda A; Kunikata R; Shiku H; Matsue T
    Biosens Bioelectron; 2013 Oct; 48():12-8. PubMed ID: 23644006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanocavity redox cycling sensors for the detection of dopamine fluctuations in microfluidic gradients.
    Kätelhön E; Hofmann B; Lemay SG; Zevenbergen MA; Offenhäusser A; Wolfrum B
    Anal Chem; 2010 Oct; 82(20):8502-9. PubMed ID: 20849083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Giant Raman scattering of alkaline phosphatase, horseradish peroxidase and lactoperoxidase on silver electrodes].
    Razumas VI; Vidugiris GI; Kulis IuIu
    Biofizika; 1987; 32(6):967-71. PubMed ID: 3435720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SU-8-based flexible amperometric device with IDA electrodes to regenerate redox species in small spaces.
    Kanno Y; Goto T; Ino K; Inoue KY; Takahashi Y; Shiku H; Matsue T
    Anal Sci; 2014; 30(2):305-9. PubMed ID: 24521920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micropipet tip-based miniaturized electrochemical device combined with ultramicroelectrode and its application in immobilization-free enzyme biosensor.
    Zhang DW; Liu JX; Nie J; Zhou YL; Zhang XX
    Anal Chem; 2013 Feb; 85(4):2032-6. PubMed ID: 23331083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An electrochemical immunosensor using p-aminophenol redox cycling by NADH on a self-assembled monolayer and ferrocene-modified Au electrodes.
    Kwon SJ; Yang H; Jo K; Kwak J
    Analyst; 2008 Nov; 133(11):1599-604. PubMed ID: 18936839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of an electrochemical DNA assay by using a 48-electrode array and redox amplification studies by means of scanning electrochemical microscopy.
    Neugebauer S; Zimdars A; Liepold P; Gebala M; Schuhmann W; Hartwich G
    Chembiochem; 2009 May; 10(7):1193-9. PubMed ID: 19353601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scanning electrochemical microscopy. 60. Quantitative calibration of the SECM substrate generation/tip collection mode and its use for the study of the oxygen reduction mechanism.
    Sánchez-Sánchez CM; Rodríguez-López J; Bard AJ
    Anal Chem; 2008 May; 80(9):3254-60. PubMed ID: 18355084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theory and practice of enzyme bioaffinity electrodes. Chemical, enzymatic, and electrochemical amplification of in situ product detection.
    Limoges B; Marchal D; Mavré F; Savéant JM
    J Am Chem Soc; 2008 Jun; 130(23):7276-85. PubMed ID: 18491854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.