BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 24621369)

  • 1. Water chemistry impacts on arsenic mobilization from arsenopyrite dissolution and secondary mineral precipitation: implications for managed aquifer recharge.
    Neil CW; Yang YJ; Schupp D; Jun YS
    Environ Sci Technol; 2014 Apr; 48(8):4395-405. PubMed ID: 24621369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving arsenopyrite oxidation rate laws: implications for arsenic mobilization during aquifer storage and recovery (ASR).
    Neil CW; Jason Todd M; Jeffrey Yang Y
    Environ Geochem Health; 2018 Dec; 40(6):2453-2464. PubMed ID: 29696495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic mobilization and attenuation by mineral-water interactions: implications for managed aquifer recharge.
    Neil CW; Yang YJ; Jun YS
    J Environ Monit; 2012 Jul; 14(7):1772-88. PubMed ID: 22706181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissolved Organic Matter Affects Arsenic Mobility and Iron(III) (hydr)oxide Formation: Implications for Managed Aquifer Recharge.
    Wu X; Bowers B; Kim D; Lee B; Jun YS
    Environ Sci Technol; 2019 Dec; 53(24):14357-14367. PubMed ID: 31640342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mobilization of Arsenic and Other Naturally Occurring Contaminants during Managed Aquifer Recharge: A Critical Review.
    Fakhreddine S; Prommer H; Scanlon BR; Ying SC; Nicot JP
    Environ Sci Technol; 2021 Feb; 55(4):2208-2223. PubMed ID: 33503373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of conceptual and numerical models for arsenic mobilization and attenuation during managed aquifer recharge.
    Wallis I; Prommer H; Simmons CT; Post V; Stuyfzand PJ
    Environ Sci Technol; 2010 Jul; 44(13):5035-41. PubMed ID: 20518522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic release from arsenopyrite weathering: insights from sequential extraction and microscopic studies.
    Basu A; Schreiber ME
    J Hazard Mater; 2013 Nov; 262():896-904. PubMed ID: 23312782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative Dissolution of Arsenic-Bearing Sulfide Minerals in Groundwater: Impact of Hydrochemical and Hydrodynamic Conditions on Arsenic Release and Surface Evolution.
    Stolze L; Battistel M; Rolle M
    Environ Sci Technol; 2022 Apr; 56(8):5049-5061. PubMed ID: 35377625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro-colonization of arsenic-resistant Staphylococcus sp. As-3 on arsenopyrite (FeAsS) drives arsenic mobilization under anoxic sub-surface mimicking conditions.
    Rathod J; Jean JS; Jiang WT; Huang IH; Liu BH; Lee YC
    Sci Total Environ; 2019 Jun; 669():527-539. PubMed ID: 30884274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Land-ocean contributions of arsenic through a river-estuary-ria system (SW Europe) under the influence of arsenopyrite deposits in the fluvial basin.
    Costas M; Prego R; Filgueiras AV; Bendicho C
    Sci Total Environ; 2011 Dec; 412-413():304-14. PubMed ID: 22078370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic control during aquifer storage recovery cycle tests in the Floridan Aquifer.
    Mirecki JE; Bennett MW; López-Baláez MC
    Ground Water; 2013; 51(4):539-49. PubMed ID: 23106789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of rainwater-borne hydrogen peroxide in the release of arsenic from arsenopyrite.
    Ma Y; Qin Y; Lin C
    Chemosphere; 2014 May; 103():349-53. PubMed ID: 24315179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geochemical Triggers of Arsenic Mobilization during Managed Aquifer Recharge.
    Fakhreddine S; Dittmar J; Phipps D; Dadakis J; Fendorf S
    Environ Sci Technol; 2015 Jul; 49(13):7802-9. PubMed ID: 26057865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling Arsenic Mobilization during Managed Aquifer Recharge: The Role of Sediment Heterogeneity.
    Fakhreddine S; Prommer H; Gorelick SM; Dadakis J; Fendorf S
    Environ Sci Technol; 2020 Jul; 54(14):8728-8738. PubMed ID: 32516527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenopyrite weathering under conditions of simulated calcareous soil.
    Lara RH; Velázquez LJ; Vazquez-Arenas J; Mallet M; Dossot M; Labastida I; Sosa-Rodríguez FS; Espinosa-Cristóbal LF; Escobedo-Bretado MA; Cruz R
    Environ Sci Pollut Res Int; 2016 Feb; 23(4):3681-706. PubMed ID: 26498805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport and transformation of arsenic in coastal aquifer at the scenario of seawater intrusion followed by managed aquifer recharge.
    Yuan C; Wei Y; Xu X; Cao X
    Water Res; 2023 Feb; 229():119440. PubMed ID: 36462261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ferric minerals and organic matter change arsenic speciation in copper mine tailings.
    Wang P; Liu Y; Menzies NW; Wehr JB; de Jonge MD; Howard DL; Kopittke PM; Huang L
    Environ Pollut; 2016 Nov; 218():835-843. PubMed ID: 27524252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thioarsenate formation upon dissolution of orpiment and arsenopyrite.
    Suess E; Planer-Friedrich B
    Chemosphere; 2012 Nov; 89(11):1390-8. PubMed ID: 22771176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Humic acid promotes arsenopyrite bio-oxidation and arsenic immobilization.
    Zhang DR; Chen HR; Xia JL; Nie ZY; Fan XL; Liu HC; Zheng L; Zhang LJ; Yang HY
    J Hazard Mater; 2020 Feb; 384():121359. PubMed ID: 31635821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic mineral dissolution and possible mobilization in mineral-microbe-groundwater environment.
    Islam AB; Maity JP; Bundschuh J; Chen CY; Bhowmik BK; Tazaki K
    J Hazard Mater; 2013 Nov; 262():989-96. PubMed ID: 22954601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.