BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 24622290)

  • 1. Processing strategies for smart electroconductive carbon nanotube-based bioceramic bone grafts.
    Mata D; Oliveira FJ; Ferreira NM; Araújo RF; Fernandes AJ; Lopes MA; Gomes PS; Fernandes MH; Silva RF
    Nanotechnology; 2014 Apr; 25(14):145602. PubMed ID: 24622290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon nanotube-based bioceramic grafts for electrotherapy of bone.
    Mata D; Horovistiz AL; Branco I; Ferro M; Ferreira NM; Belmonte M; Lopes MA; Silva RF; Oliveira FJ
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():360-8. PubMed ID: 24268270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifunctional carbon nanotube/bioceramics modulate the directional growth and activity of osteoblastic cells.
    Mata D; Oliveira FJ; Ferro M; Gomes PS; Fernandes MH; Lopes MA; Silval RF
    J Biomed Nanotechnol; 2014 May; 10(5):725-43. PubMed ID: 24734525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocompatibility and bone tissue compatibility of alumina ceramics reinforced with carbon nanotubes.
    Ogihara N; Usui Y; Aoki K; Shimizu M; Narita N; Hara K; Nakamura K; Ishigaki N; Takanashi S; Okamoto M; Kato H; Haniu H; Ogiwara N; Nakayama N; Taruta S; Saito N
    Nanomedicine (Lond); 2012 Jul; 7(7):981-93. PubMed ID: 22401267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of carbon nanotube (MWCNT) containing P(3HB)/bioactive glass composites for tissue engineering applications.
    Misra SK; Ohashi F; Valappil SP; Knowles JC; Roy I; Silva SR; Salih V; Boccaccini AR
    Acta Biomater; 2010 Mar; 6(3):735-42. PubMed ID: 19800427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of carbon nanotube induced adhesion of osteoblast on hydroxyapatite using nano-scratch technique.
    Lahiri D; Benaduce AP; Kos L; Agarwal A
    Nanotechnology; 2011 Sep; 22(35):355703. PubMed ID: 21817784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical and in vitro biological performances of hydroxyapatite-carbon nanotube composite coatings deposited on Ti by aerosol deposition.
    Hahn BD; Lee JM; Park DS; Choi JJ; Ryu J; Yoon WH; Lee BK; Shin DS; Kim HE
    Acta Biomater; 2009 Oct; 5(8):3205-14. PubMed ID: 19446047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro.
    Balani K; Anderson R; Laha T; Andara M; Tercero J; Crumpler E; Agarwal A
    Biomaterials; 2007 Feb; 28(4):618-24. PubMed ID: 17007921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon nanotube-collagen@hydroxyapatite composites with improved mechanical and biological properties fabricated by a multi in situ synthesis process.
    Li H; Sun X; Li Y; Wang H; Li B; Liang C
    Biomed Microdevices; 2020 Sep; 22(4):64. PubMed ID: 32897447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CaO--P2O5--Na2O-based sintering additives for hydroxyapatite (HAp) ceramics.
    Kalita SJ; Bose S; Hosick HL; Bandyopadhyay A
    Biomaterials; 2004 May; 25(12):2331-9. PubMed ID: 14741598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wear behavior and in vitro cytotoxicity of wear debris generated from hydroxyapatite-carbon nanotube composite coating.
    Lahiri D; Benaduce AP; Rouzaud F; Solomon J; Keshri AK; Kos L; Agarwal A
    J Biomed Mater Res A; 2011 Jan; 96(1):1-12. PubMed ID: 20945477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro investigations of bone remodeling on a transparent hydroxyapatite ceramic.
    John A; Varma HK; Vijayan S; Bernhardt A; Lode A; Vogel A; Burmeister B; Hanke T; Domaschke H; Gelinsky M
    Biomed Mater; 2009 Feb; 4(1):015007. PubMed ID: 19020346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioglass-based scaffolds with carbon nanotube coating for bone tissue engineering.
    Meng D; Ioannou J; Boccaccini AR
    J Mater Sci Mater Med; 2009 Oct; 20(10):2139-44. PubMed ID: 19437104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proliferation and bone-related gene expression of osteoblasts grown on hydroxyapatite ceramics sintered at different temperature.
    Wang C; Duan Y; Markovic B; Barbara J; Rolfe Howlett C; Zhang X; Zreiqat H
    Biomaterials; 2004 Jul; 25(15):2949-56. PubMed ID: 14967527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon nanotube-reinforced mesoporous hydroxyapatite composites with excellent mechanical and biological properties for bone replacement material application.
    Li H; Song X; Li B; Kang J; Liang C; Wang H; Yu Z; Qiao Z
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1078-1087. PubMed ID: 28531981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of nanostructured hydroxyapatite and analysis of human osteoblastic cellular response.
    Guo X; Gough JE; Xiao P; Liu J; Shen Z
    J Biomed Mater Res A; 2007 Sep; 82(4):1022-32. PubMed ID: 17377965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and in vitro bioactivity of zinc-containing bioactive glass and glass-ceramics.
    Du RL; Chang J; Ni SY; Zhai WY; Wang JY
    J Biomater Appl; 2006 Apr; 20(4):341-60. PubMed ID: 16443621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid fabrication of dense 45S5 Bioglass
    Li Z; Thompson BC; Hu H; Khor KA
    Biomed Mater; 2016 Oct; 11(6):065006. PubMed ID: 27786167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bactericidal effect of silver-reinforced carbon nanotube and hydroxyapatite composites.
    Afzal MA; Kalmodia S; Kesarwani P; Basu B; Balani K
    J Biomater Appl; 2013 May; 27(8):967-78. PubMed ID: 22286208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon nanotube-poly(lactide-co-glycolide) composite scaffolds for bone tissue engineering applications.
    Cheng Q; Rutledge K; Jabbarzadeh E
    Ann Biomed Eng; 2013 May; 41(5):904-16. PubMed ID: 23283475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.