These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 24622330)

  • 21. Changes in measures of motor axon excitability with age.
    Jankelowitz SK; McNulty PA; Burke D
    Clin Neurophysiol; 2007 Jun; 118(6):1397-404. PubMed ID: 17452010
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lack of cortical or Ia-afferent spinal pathway involvement in muscle force loss after passive static stretching.
    Pulverenti TS; Trajano GS; Walsh A; Kirk BJC; Blazevich AJ
    J Neurophysiol; 2020 May; 123(5):1896-1906. PubMed ID: 32267196
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes in excitability and accommodation of human motor axons following brief periods of ischaemia.
    Bostock H; Baker M; Grafe P; Reid G
    J Physiol; 1991 Sep; 441():513-35. PubMed ID: 1816385
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Maximal force, voluntary activation and muscle soreness after eccentric damage to human elbow flexor muscles.
    Prasartwuth O; Taylor JL; Gandevia SC
    J Physiol; 2005 Aug; 567(Pt 1):337-48. PubMed ID: 15946963
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differences in activity-dependent hyperpolarization in human sensory and motor axons.
    Kiernan MC; Lin CS; Burke D
    J Physiol; 2004 Jul; 558(Pt 1):341-9. PubMed ID: 15146048
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Corticospinal excitability to the biceps brachii and its relationship to postactivation potentiation of the elbow flexors.
    Collins BW; Gale LH; Buckle NCM; Button DC
    Physiol Rep; 2017 Apr; 5(8):. PubMed ID: 28455452
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Excitability and firing behavior of single slow motor axons transmitting natural repetitive firing of human motoneurons.
    Kudina LP; Andreeva RE
    J Neurophysiol; 2017 Aug; 118(2):1355-1360. PubMed ID: 28615333
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of motor cortex stimulation to measure simultaneously the changes in dynamic muscle properties and voluntary activation in human muscles.
    Todd G; Taylor JL; Butler JE; Martin PG; Gorman RB; Gandevia SC
    J Appl Physiol (1985); 2007 May; 102(5):1756-66. PubMed ID: 17218428
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Changes in motor cortex excitability associated with muscle fatigue in patients with Parkinson's disease.
    Milanović S; Filipović SR; Radovanović S; Blesić S; Ilić NV; Kostić VS; Ljubisavljević MR
    Vojnosanit Pregl; 2013 Mar; 70(3):298-303. PubMed ID: 23607242
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spinal contribution to neuromuscular recovery differs between elbow-flexor and knee-extensor muscles after a maximal sustained fatiguing task.
    Vernillo G; Temesi J; Martin M; Krüger RL; Millet GY
    J Neurophysiol; 2020 Sep; 124(3):763-773. PubMed ID: 32755359
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Change in the ipsilateral motor cortex excitability is independent from a muscle contraction phase during unilateral repetitive isometric contractions.
    Uehara K; Morishita T; Kubota S; Funase K
    PLoS One; 2013; 8(1):e55083. PubMed ID: 23383063
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Paired corticospinal-motoneuronal stimulation increases maximal voluntary activation of human adductor pollicis.
    D'Amico JM; Dongés SC; Taylor JL
    J Neurophysiol; 2018 Jan; 119(1):369-376. PubMed ID: 29046429
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles.
    Søgaard K; Gandevia SC; Todd G; Petersen NT; Taylor JL
    J Physiol; 2006 Jun; 573(Pt 2):511-23. PubMed ID: 16556656
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contraction intensity-dependent variations in the responses to brain and corticospinal tract stimulation after a single session of resistance training in men.
    Colomer-Poveda D; Romero-Arenas S; Lundbye-Jensen J; Hortobágyi T; Márquez G
    J Appl Physiol (1985); 2019 Oct; 127(4):1128-1139. PubMed ID: 31436513
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Axonal excitability properties in amyotrophic lateral sclerosis.
    Vucic S; Kiernan MC
    Clin Neurophysiol; 2006 Jul; 117(7):1458-66. PubMed ID: 16759905
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relation Between the Frequency of Short-Pulse Electrical Stimulation of Afferent Nerve Fibers and Evoked Muscle Force.
    Dideriksen J; Leerskov K; Czyzewska M; Rasmussen R
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2737-2745. PubMed ID: 28237919
    [No Abstract]   [Full Text] [Related]  

  • 37. Altered responses of human elbow flexors to peripheral-nerve and cortical stimulation during a sustained maximal voluntary contraction.
    Taylor JL; Butler JE; Gandevia SC
    Exp Brain Res; 1999 Jul; 127(1):108-15. PubMed ID: 10424420
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Muscle length effect on corticospinal excitability during maximal concentric, isometric and eccentric contractions of the knee extensors.
    Doguet V; Nosaka K; Guével A; Thickbroom G; Ishimura K; Jubeau M
    Exp Physiol; 2017 Nov; 102(11):1513-1523. PubMed ID: 28796385
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clarifying distal axonal properties of the median nerve.
    Moore D; Menon P; Vucic S
    Muscle Nerve; 2012 Apr; 45(4):492-9. PubMed ID: 22431081
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contractile speed and EMG changes during fatigue of sustained maximal voluntary contractions.
    Bigland-Ritchie B; Johansson R; Lippold OC; Woods JJ
    J Neurophysiol; 1983 Jul; 50(1):313-24. PubMed ID: 6308182
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.