These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 24622544)

  • 41. NMR metabolomics of planktonic and biofilm modes of growth in Pseudomonas aeruginosa.
    Gjersing EL; Herberg JL; Horn J; Schaldach CM; Maxwell RS
    Anal Chem; 2007 Nov; 79(21):8037-45. PubMed ID: 17915964
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens.
    Strycharz SM; Glaven RH; Coppi MV; Gannon SM; Perpetua LA; Liu A; Nevin KP; Lovley DR
    Bioelectrochemistry; 2011 Feb; 80(2):142-50. PubMed ID: 20696622
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enrichment and analysis of anode-respiring bacteria from diverse anaerobic inocula.
    Miceli JF; Parameswaran P; Kang DW; Krajmalnik-Brown R; Torres CI
    Environ Sci Technol; 2012 Sep; 46(18):10349-55. PubMed ID: 22909141
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems.
    Guo K; Freguia S; Dennis PG; Chen X; Donose BC; Keller J; Gooding JJ; Rabaey K
    Environ Sci Technol; 2013 Jul; 47(13):7563-70. PubMed ID: 23745742
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spectroelectrochemical analyses of electroactive microbial biofilms.
    Millo D
    Biochem Soc Trans; 2012 Dec; 40(6):1284-90. PubMed ID: 23176469
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Kinetic, electrochemical, and microscopic characterization of the thermophilic, anode-respiring bacterium Thermincola ferriacetica.
    Parameswaran P; Bry T; Popat SC; Lusk BG; Rittmann BE; Torres CI
    Environ Sci Technol; 2013 May; 47(9):4934-40. PubMed ID: 23544360
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Magnetic resonance microscopy analysis of advective transport in a biofilm reactor.
    Gjersing EL; Codd SL; Seymour JD; Stewart PS
    Biotechnol Bioeng; 2005 Mar; 89(7):822-34. PubMed ID: 15696510
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A computational model for biofilm-based microbial fuel cells.
    Picioreanu C; Head IM; Katuri KP; van Loosdrecht MC; Scott K
    Water Res; 2007 Jul; 41(13):2921-40. PubMed ID: 17537478
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization.
    Torres CI; Krajmalnik-Brown R; Parameswaran P; Marcus AK; Wanger G; Gorby YA; Rittmann BE
    Environ Sci Technol; 2009 Dec; 43(24):9519-24. PubMed ID: 20000550
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Conductive properties of methanogenic biofilms.
    Li C; Lesnik KL; Liu H
    Bioelectrochemistry; 2018 Feb; 119():220-226. PubMed ID: 29078172
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The performance of a microbial fuel cell depends strongly on anode geometry: a multidimensional modeling study.
    Merkey BV; Chopp DL
    Bull Math Biol; 2012 Apr; 74(4):834-57. PubMed ID: 22015479
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In situ nuclear magnetic resonance microimaging of live biofilms in a microchannel.
    Renslow RS; Marshall MJ; Tucker AE; Chrisler WB; Yu XY
    Analyst; 2017 Jun; 142(13):2363-2371. PubMed ID: 28425543
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Time-course correlation of biofilm properties and electrochemical performance in single-chamber microbial fuel cells.
    Ren Z; Ramasamy RP; Cloud-Owen SR; Yan H; Mench MM; Regan JM
    Bioresour Technol; 2011 Jan; 102(1):416-21. PubMed ID: 20591659
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Specific localization of the c-type cytochrome OmcZ at the anode surface in current-producing biofilms of Geobacter sulfurreducens.
    Inoue K; Leang C; Franks AE; Woodard TL; Nevin KP; Lovley DR
    Environ Microbiol Rep; 2011 Apr; 3(2):211-7. PubMed ID: 23761253
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A laminar-flow microfluidic device for quantitative analysis of microbial electrochemical activity.
    Li Z; Venkataraman A; Rosenbaum MA; Angenent LT
    ChemSusChem; 2012 Jun; 5(6):1119-23. PubMed ID: 22674693
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Determining the flow regime in a biofilm carrier by means of magnetic resonance imaging.
    Herrling MP; Guthausen G; Wagner M; Lackner S; Horn H
    Biotechnol Bioeng; 2015 May; 112(5):1023-32. PubMed ID: 25425488
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microsensors and microscale gradients in biofilms.
    Beyenal H; Babauta J
    Adv Biochem Eng Biotechnol; 2014; 146():235-56. PubMed ID: 24008918
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Growth, structure and oxygen penetration in particle supported autotrophic biofilms.
    Boessmann M; Neu TR; Horn H; Hempel DC
    Water Sci Technol; 2004; 49(11-12):371-7. PubMed ID: 15303764
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Exploiting a new electrochemical sensor for biofilm monitoring and water treatment optimization.
    Pavanello G; Faimali M; Pittore M; Mollica A; Mollica A; Mollica A
    Water Res; 2011 Feb; 45(4):1651-8. PubMed ID: 21186042
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Application of electro-active biofilms.
    Erable B; DuĊ£eanu NM; Ghangrekar MM; Dumas C; Scott K
    Biofouling; 2010 Jan; 26(1):57-71. PubMed ID: 20390557
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.