These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 24622557)

  • 1. Separation efficiency of a hydrodynamic separator using a 3D computational fluid dynamics multiscale approach.
    Schmitt V; Dufresne M; Vazquez J; Fischer M; Morin A
    Water Sci Technol; 2014; 69(5):1067-73. PubMed ID: 24622557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of a hydrodynamic separator using a multiscale computational fluid dynamics approach.
    Schmitt V; Dufresne M; Vazquez J; Fischer M; Morin A
    Water Sci Technol; 2013; 68(7):1574-81. PubMed ID: 24135107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CFD modelling of flow field and particle tracking in a hydrodynamic stormwater separator.
    Lee JH; Bang KW; Choi CS; Lim HS
    Water Sci Technol; 2010; 62(10):2381-8. PubMed ID: 21076225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple design criteria and efficiency of hydrodynamic vortex separators.
    Gronowska-Szneler MA; Sawicki JM
    Water Sci Technol; 2014; 70(3):457-63. PubMed ID: 25098875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can a stepwise steady flow computational fluid dynamics model reproduce unsteady particulate matter separation for common unit operations?
    Pathapati SS; Sansalone JJ
    Environ Sci Technol; 2011 Jul; 45(13):5605-13. PubMed ID: 21644537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of flow hydrodynamics in a pilot-scale dissolved air flotation tank: a comparison between CFD and experimental measurements.
    Lakghomi B; Lawryshyn Y; Hofmann R
    Water Sci Technol; 2015; 72(7):1111-8. PubMed ID: 26398026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of longitudinal baffles on particles settling in a sedimentation basin.
    Park NS; Kim SS; Lee YJ; Wang CK
    Water Sci Technol; 2014; 69(6):1212-8. PubMed ID: 24647186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bed turbulent kinetic energy boundary conditions for trapping efficiency and spatial distribution of sediments in basins.
    Isenmann G; Dufresne M; Vazquez J; Mose R
    Water Sci Technol; 2017 Oct; 76(7-8):2032-2043. PubMed ID: 29068333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-phase computational fluid dynamics assessment of bubble plume in air-diffuser destratification.
    Yum K; Ahn J; Park H; Ko IH
    Environ Technol; 2005 Sep; 26(9):1043-54. PubMed ID: 16196412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CFD modeling of an ultrasonic separator for the removal of lipid particles from pericardial suction blood.
    Trippa G; Ventikos Y; Taggart DP; Coussios CC
    IEEE Trans Biomed Eng; 2011 Feb; 58(2):282-90. PubMed ID: 20679023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viscous flow simulation in a stenosis model using discrete particle dynamics: a comparison between DPD and CFD.
    Feng R; Xenos M; Girdhar G; Kang W; Davenport JW; Deng Y; Bluestein D
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):119-29. PubMed ID: 21369918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodynamic evaluation of a full-scale facultative pond by computational fluid dynamics (CFD) and field measurements.
    Passos RG; von Sperling M; Ribeiro TB
    Water Sci Technol; 2014; 70(3):569-75. PubMed ID: 25098890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling of particle paths passing through an ultrasonic standing wave.
    Townsend RJ; Hill M; Harris NR; White NM
    Ultrasonics; 2004 Apr; 42(1-9):319-24. PubMed ID: 15047305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removing Grit During Wastewater Treatment: CFD Analysis of HDVS Performance.
    Meroney RN; Sheker RE
    Water Environ Res; 2016 May; 88(5):438-48. PubMed ID: 27131307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of intermittency in under-resolved smoothed-particle-hydrodynamics direct numerical simulations of forced compressible turbulence.
    Shi Y; Ellero M; Adams NA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036708. PubMed ID: 22587210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational fluid dynamic simulation of axial and radial flow membrane chromatography: mechanisms of non-ideality and validation of the zonal rate model.
    Ghosh P; Vahedipour K; Lin M; Vogel JH; Haynes C; von Lieres E
    J Chromatogr A; 2013 Aug; 1305():114-22. PubMed ID: 23885666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural improvements on hydrodynamic separators: a computational fluid dynamics approach.
    Mendoza JA; Lee DH; Lee SI; Kang JH
    Water Sci Technol; 2016 Dec; 74(12):2898-2908. PubMed ID: 27997399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow and particle deposition in the Turbuhaler: a CFD simulation.
    Milenkovic J; Alexopoulos AH; Kiparissides C
    Int J Pharm; 2013 May; 448(1):205-13. PubMed ID: 23528279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational fluid dynamics simulations of particle deposition in large-scale, multigenerational lung models.
    Walters DK; Luke WH
    J Biomech Eng; 2011 Jan; 133(1):011003. PubMed ID: 21186893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio-inspired particle separator design based on the food retention mechanism by suspension-feeding fish.
    Hung TC; Piedrahita RH; Cheer A
    Bioinspir Biomim; 2012 Dec; 7(4):046003. PubMed ID: 22820145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.