These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Photothermal effects from Au-Cu2O core-shell nanocubes, octahedra, and nanobars with broad near-infrared absorption tunability. Wang HJ; Yang KH; Hsu SC; Huang MH Nanoscale; 2016 Jan; 8(2):965-72. PubMed ID: 26660504 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of Au@Ag core-shell nanocubes containing varying shaped cores and their localized surface plasmon resonances. Gong J; Zhou F; Li Z; Tang Z Langmuir; 2012 Jun; 28(24):8959-64. PubMed ID: 22299655 [TBL] [Abstract][Full Text] [Related]
9. Au nanocube-directed fabrication of Au-Pd core-shell nanocrystals with tetrahexahedral, concave octahedral, and octahedral structures and their electrocatalytic activity. Lu CL; Prasad KS; Wu HL; Ho JA; Huang MH J Am Chem Soc; 2010 Oct; 132(41):14546-53. PubMed ID: 20873739 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of Au-Pd core-shell heterostructures with systematic shape evolution using octahedral nanocrystal cores and their catalytic activity. Yang CW; Chanda K; Lin PH; Wang YN; Liao CW; Huang MH J Am Chem Soc; 2011 Dec; 133(49):19993-20000. PubMed ID: 22091631 [TBL] [Abstract][Full Text] [Related]
11. Facet-dependent and au nanocrystal-enhanced electrical and photocatalytic properties of Au-Cu2O core-shell heterostructures. Kuo CH; Yang YC; Gwo S; Huang MH J Am Chem Soc; 2011 Feb; 133(4):1052-7. PubMed ID: 21174406 [TBL] [Abstract][Full Text] [Related]
12. Heteroepitaxial growth of core-shell and core-multishell nanocrystals composed of palladium and gold. Wang F; Sun LD; Feng W; Chen H; Yeung MH; Wang J; Yan CH Small; 2010 Nov; 6(22):2566-75. PubMed ID: 20963792 [TBL] [Abstract][Full Text] [Related]
13. Silica shell/gold core nanoparticles: correlating shell thickness with the plasmonic red shift upon aggregation. Vanderkooy A; Chen Y; Gonzaga F; Brook MA ACS Appl Mater Interfaces; 2011 Oct; 3(10):3942-7. PubMed ID: 21882833 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of Small Au-Ag Core-Shell Cubes, Cuboctahedra, and Octahedra with Size Tunability and Their Optical and Photothermal Properties. Chiang C; Huang MH Small; 2015 Dec; 11(45):6018-25. PubMed ID: 26449494 [TBL] [Abstract][Full Text] [Related]
15. Surface plasmon spectroscopy of gold-poly-N-isopropylacrylamide core-shell particles. Karg M; Jaber S; Hellweg T; Mulvaney P Langmuir; 2011 Jan; 27(2):820-7. PubMed ID: 21155547 [TBL] [Abstract][Full Text] [Related]
16. Hollow Au-Cu2O Core-Shell Nanoparticles with Geometry-Dependent Optical Properties as Efficient Plasmonic Photocatalysts under Visible Light. Lu B; Liu A; Wu H; Shen Q; Zhao T; Wang J Langmuir; 2016 Mar; 32(12):3085-94. PubMed ID: 26954100 [TBL] [Abstract][Full Text] [Related]
17. Plasmon enhancement effect in Au gold nanorods@Cu2O core-shell nanostructures and their use in probing defect states. Shi X; Ji Y; Hou S; Liu W; Zhang H; Wen T; Yan J; Song M; Hu Z; Wu X Langmuir; 2015 Feb; 31(4):1537-46. PubMed ID: 25564759 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and characterization of gold cubic nanoshells using water-soluble GeO₂templates. Wang C; Tang P; Ge M; Xu X; Cao F; Jiang JZ Nanotechnology; 2011 Apr; 22(15):155706. PubMed ID: 21389574 [TBL] [Abstract][Full Text] [Related]
19. Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties. Ma Y; Li W; Cho EC; Li Z; Yu T; Zeng J; Xie Z; Xia Y ACS Nano; 2010 Nov; 4(11):6725-34. PubMed ID: 20964400 [TBL] [Abstract][Full Text] [Related]
20. Optical absorption analysis and optimization of gold nanoshells. Tuersun P; Han X Appl Opt; 2013 Feb; 52(6):1325-9. PubMed ID: 23435006 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]