These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Oxidative Injury and Iron Redistribution Are Pathological Hallmarks of Marmoset Experimental Autoimmune Encephalomyelitis. Dunham J; Bauer J; Campbell GR; Mahad DJ; van Driel N; van der Pol SMA; 't Hart BA; Lassmann H; Laman JD; van Horssen J; Kap YS J Neuropathol Exp Neurol; 2017 Jun; 76(6):467-478. PubMed ID: 28505283 [TBL] [Abstract][Full Text] [Related]
5. MicroRNA-142 regulates inflammation and T cell differentiation in an animal model of multiple sclerosis. Talebi F; Ghorbani S; Chan WF; Boghozian R; Masoumi F; Ghasemi S; Vojgani M; Power C; Noorbakhsh F J Neuroinflammation; 2017 Mar; 14(1):55. PubMed ID: 28302134 [TBL] [Abstract][Full Text] [Related]
6. Activated microglia mediate axoglial disruption that contributes to axonal injury in multiple sclerosis. Howell OW; Rundle JL; Garg A; Komada M; Brophy PJ; Reynolds R J Neuropathol Exp Neurol; 2010 Oct; 69(10):1017-1033. PubMed ID: 20838243 [TBL] [Abstract][Full Text] [Related]
7. NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury. Fischer MT; Sharma R; Lim JL; Haider L; Frischer JM; Drexhage J; Mahad D; Bradl M; van Horssen J; Lassmann H Brain; 2012 Mar; 135(Pt 3):886-99. PubMed ID: 22366799 [TBL] [Abstract][Full Text] [Related]
8. Organic Selenium Reaches the Central Nervous System and Downmodulates Local Inflammation: A Complementary Therapy for Multiple Sclerosis? de Toledo JHDS; Fraga-Silva TFC; Borim PA; de Oliveira LRC; Oliveira EDS; Périco LL; Hiruma-Lima CA; de Souza AAL; de Oliveira CAF; Padilha PM; Pinatto-Botelho MF; Dos Santos AA; Sartori A; Zorzella-Pezavento SFG Front Immunol; 2020; 11():571844. PubMed ID: 33193354 [TBL] [Abstract][Full Text] [Related]
9. Galectin-4, a Negative Regulator of Oligodendrocyte Differentiation, Is Persistently Present in Axons and Microglia/Macrophages in Multiple Sclerosis Lesions. de Jong CGHM; Stancic M; Pinxterhuis TH; van Horssen J; van Dam AM; Gabius HJ; Baron W J Neuropathol Exp Neurol; 2018 Nov; 77(11):1024-1038. PubMed ID: 30252090 [TBL] [Abstract][Full Text] [Related]
10. Connexin 30 Deficiency Attenuates Chronic but Not Acute Phases of Experimental Autoimmune Encephalomyelitis Through Induction of Neuroprotective Microglia. Fang M; Yamasaki R; Li G; Masaki K; Yamaguchi H; Fujita A; Isobe N; Kira JI Front Immunol; 2018; 9():2588. PubMed ID: 30464764 [TBL] [Abstract][Full Text] [Related]
11. Different mechanisms of inflammation induced in virus and autoimmune-mediated models of multiple sclerosis in C57BL6 mice. Kishore A; Kanaujia A; Nag S; Rostami AM; Kenyon LC; Shindler KS; Das Sarma J Biomed Res Int; 2013; 2013():589048. PubMed ID: 24083230 [TBL] [Abstract][Full Text] [Related]
12. Lesion genesis in a subset of patients with multiple sclerosis: a role for innate immunity? Marik C; Felts PA; Bauer J; Lassmann H; Smith KJ Brain; 2007 Nov; 130(Pt 11):2800-15. PubMed ID: 17956913 [TBL] [Abstract][Full Text] [Related]
13. Microglia pre-activation and neurodegeneration precipitate neuroinflammation without exacerbating tissue injury in experimental autoimmune encephalomyelitis. Wimmer I; Scharler C; Zrzavy T; Kadowaki T; Mödlagl V; Rojc K; Tröscher AR; Kitic M; Ueda S; Bradl M; Lassmann H Acta Neuropathol Commun; 2019 Jan; 7(1):14. PubMed ID: 30704526 [TBL] [Abstract][Full Text] [Related]
14. T cell-activation in neuromyelitis optica lesions plays a role in their formation. Pohl M; Kawakami N; Kitic M; Bauer J; Martins R; Fischer MT; Machado-Santos J; Mader S; Ellwart JW; Misu T; Fujihara K; Wekerle H; Reindl M; Lassmann H; Bradl M Acta Neuropathol Commun; 2013 Dec; 1():85. PubMed ID: 24367907 [TBL] [Abstract][Full Text] [Related]
15. The N-terminal domain of the myelin oligodendrocyte glycoprotein (MOG) induces acute demyelinating experimental autoimmune encephalomyelitis in the Lewis rat. Adelmann M; Wood J; Benzel I; Fiori P; Lassmann H; Matthieu JM; Gardinier MV; Dornmair K; Linington C J Neuroimmunol; 1995 Dec; 63(1):17-27. PubMed ID: 8557821 [TBL] [Abstract][Full Text] [Related]
16. Bee Venom Acupuncture Alleviates Experimental Autoimmune Encephalomyelitis by Upregulating Regulatory T Cells and Suppressing Th1 and Th17 Responses. Lee MJ; Jang M; Choi J; Lee G; Min HJ; Chung WS; Kim JI; Jee Y; Chae Y; Kim SH; Lee SJ; Cho IH Mol Neurobiol; 2016 Apr; 53(3):1419-1445. PubMed ID: 25579380 [TBL] [Abstract][Full Text] [Related]
17. Inconsistence between number and function of autoreactive T cells in the course of experimental autoimmune encephalomyelitis. Wan X; Pei W; Zhang Y; Zhang L; Shahzad KA; Xu T; Shen C Immunol Invest; 2018 Jan; 47(1):1-17. PubMed ID: 28872930 [TBL] [Abstract][Full Text] [Related]
18. The changing concepts in the neuropathology of acquired demyelinating central nervous system disorders. Lassmann H Curr Opin Neurol; 2019 Jun; 32(3):313-319. PubMed ID: 30893100 [TBL] [Abstract][Full Text] [Related]
19. Immune Thymic Profile of the MOG-Induced Experimental Autoimmune Encephalomyelitis Mouse Model. das Neves SP; Serre-Miranda C; Nobrega C; Roque S; Cerqueira JJ; Correia-Neves M; Marques F Front Immunol; 2018; 9():2335. PubMed ID: 30369926 [TBL] [Abstract][Full Text] [Related]