BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 24623159)

  • 1. Improved microcirculation imaging of human skin in vivo using optical microangiography with a correlation mapping mask.
    Choi WJ; Reif R; Yousefi S; Wang RK
    J Biomed Opt; 2014 Mar; 19(3):36010. PubMed ID: 24623159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Volumetric cutaneous microangiography of human skin
    Choi WJ; Wang RK
    Quantum Elec (Woodbury); 2014; 44(8):740. PubMed ID: 25635163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking.
    Zhang Q; Huang Y; Zhang T; Kubach S; An L; Laron M; Sharma U; Wang RK
    J Biomed Opt; 2015 Jun; 20(6):066008. PubMed ID: 26102573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical coherence tomography microangiography for monitoring the response of vascular perfusion to external pressure on human skin tissue.
    Choi WJ; Wang H; Wang RK
    J Biomed Opt; 2014 May; 19(5):056003. PubMed ID: 24810259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removing noises caused by motion artefacts in microcirculation maps of human skin in vivo.
    Chen C; Shi W; Gao W
    J Microsc; 2015 Dec; 260(3):389-99. PubMed ID: 26356237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of cmOCT and continuous wavelet transform analysis to the assessment of skin microcirculation dynamics.
    Smirni S; MacDonald MP; Robertson CP; McNamara PM; O'Gorman S; Leahy MJ; Khan F
    J Biomed Opt; 2018 Jul; 23(7):1-13. PubMed ID: 29992798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced in vivo visualization of the microcirculation by topical application of fructose solution confirmed with correlation mapping optical coherence tomography.
    Enfield J; McGrath J; Daly SM; Leahy M
    J Biomed Opt; 2016 Aug; 21(8):081212. PubMed ID: 27311423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motion artifact and background noise suppression on optical microangiography frames using a naïve Bayes mask.
    Reif R; Baran U; Wang RK
    Appl Opt; 2014 Jul; 53(19):4164-71. PubMed ID: 25089975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of psoriatic plaque in vivo with correlation mapping optical coherence tomography.
    Zafar H; Enfield J; O'Connell ML; Ramsay B; Lynch M; Leahy MJ
    Skin Res Technol; 2014 May; 20(2):141-6. PubMed ID: 23869903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capillary blood flow imaging within human finger cuticle using optical microangiography.
    Baran U; Shi L; Wang RK
    J Biophotonics; 2015 Jan; 8(1-2):46-51. PubMed ID: 25590582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography.
    Qin J; Jiang J; An L; Gareau D; Wang RK
    Lasers Surg Med; 2011 Feb; 43(2):122-9. PubMed ID: 21384393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly sensitive imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography.
    Zhi Z; Jung Y; Jia Y; An L; Wang RK
    Biomed Opt Express; 2011 Apr; 2(5):1059-68. PubMed ID: 21559119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo OCT microangiography of rodent iris.
    Choi WJ; Zhi Z; Wang RK
    Opt Lett; 2014 Apr; 39(8):2455-8. PubMed ID: 24979017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High resolution imaging of acne lesion development and scarring in human facial skin using OCT-based microangiography.
    Baran U; Li Y; Choi WJ; Kalkan G; Wang RK
    Lasers Surg Med; 2015 Mar; 47(3):231-8. PubMed ID: 25740313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography.
    An L; Wang RK
    Opt Express; 2008 Jul; 16(15):11438-52. PubMed ID: 18648464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of microcirculation dynamics during cutaneous wound healing phases in vivo using optical microangiography.
    Yousefi S; Qin J; Dziennis S; Wang RK
    J Biomed Opt; 2014; 19(7):76015. PubMed ID: 25036212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peripapillary Retinal Nerve Fiber Layer Vascular Microcirculation in Glaucoma Using Optical Coherence Tomography-Based Microangiography.
    Chen CL; Zhang A; Bojikian KD; Wen JC; Zhang Q; Xin C; Mudumbai RC; Johnstone MA; Chen PP; Wang RK
    Invest Ophthalmol Vis Sci; 2016 Jul; 57(9):OCT475-85. PubMed ID: 27442341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo blood flow imaging of inflammatory human skin induced by tape stripping using optical microangiography.
    Wang H; Baran U; Wang RK
    J Biophotonics; 2015 Mar; 8(3):265-72. PubMed ID: 24659511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 4D optical coherence tomography-based micro-angiography achieved by 1.6-MHz FDML swept source.
    Zhi Z; Qin W; Wang J; Wei W; Wang RK
    Opt Lett; 2015 Apr; 40(8):1779-82. PubMed ID: 25872072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina.
    An L; Shen TT; Wang RK
    J Biomed Opt; 2011 Oct; 16(10):106013. PubMed ID: 22029360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.