BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 24623280)

  • 1. Extra- and intracellular factors regulating cardiomyocyte proliferation in postnatal life.
    Zacchigna S; Giacca M
    Cardiovasc Res; 2014 May; 102(2):312-20. PubMed ID: 24623280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new direction for cardiac regeneration therapy: application of synergistically acting epicardium-derived cells and cardiomyocyte progenitor cells.
    Winter EM; van Oorschot AA; Hogers B; van der Graaf LM; Doevendans PA; Poelmann RE; Atsma DE; Gittenberger-de Groot AC; Goumans MJ
    Circ Heart Fail; 2009 Nov; 2(6):643-53. PubMed ID: 19919990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microRNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice.
    Tian Y; Liu Y; Wang T; Zhou N; Kong J; Chen L; Snitow M; Morley M; Li D; Petrenko N; Zhou S; Lu M; Gao E; Koch WJ; Stewart KM; Morrisey EE
    Sci Transl Med; 2015 Mar; 7(279):279ra38. PubMed ID: 25787764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. miRNA-204 drives cardiomyocyte proliferation via targeting Jarid2.
    Liang D; Li J; Wu Y; Zhen L; Li C; Qi M; Wang L; Deng F; Huang J; Lv F; Liu Y; Ma X; Yu Z; Zhang Y; Chen YH
    Int J Cardiol; 2015 Dec; 201():38-48. PubMed ID: 26298346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of D-type cyclins in heart development and disease.
    Hotchkiss A; Robinson J; MacLean J; Feridooni T; Wafa K; Pasumarthi KB
    Can J Physiol Pharmacol; 2012 Sep; 90(9):1197-207. PubMed ID: 22900666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can the cardiomyocyte cell cycle be reprogrammed?
    Bicknell KA; Coxon CH; Brooks G
    J Mol Cell Cardiol; 2007 Apr; 42(4):706-21. PubMed ID: 17362983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adult Cardiomyocyte Proliferation: a New Insight for Myocardial Infarction Therapy.
    Zhu F; Meng Q; Yu Y; Shao L; Shen Z
    J Cardiovasc Transl Res; 2021 Jun; 14(3):457-466. PubMed ID: 32820393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development, Proliferation, and Growth of the Mammalian Heart.
    Günthel M; Barnett P; Christoffels VM
    Mol Ther; 2018 Jul; 26(7):1599-1609. PubMed ID: 29929790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A growing role for the Hippo signaling pathway in the heart.
    Zhang Y; Del Re DP
    J Mol Med (Berl); 2017 May; 95(5):465-472. PubMed ID: 28280861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of cardiomyocyte and muscle stem cell proliferation in pig.
    Yin B; Ren H; Cai H; Jiang Y; Zhao S; Wang H
    Exp Cell Res; 2020 Mar; 388(2):111854. PubMed ID: 31954694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Harnessing the microRNA pathway for cardiac regeneration.
    Giacca M; Zacchigna S
    J Mol Cell Cardiol; 2015 Dec; 89(Pt A):68-74. PubMed ID: 26431632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanisms of heart regeneration.
    Vujic A; Natarajan N; Lee RT
    Semin Cell Dev Biol; 2020 Apr; 100():20-28. PubMed ID: 31587963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thrombospondin 1 and Reelin act through Vldlr to regulate cardiac growth and repair.
    Pei L; Ouyang Z; Zhang H; Huang S; Jiang R; Liu B; Tang Y; Feng M; Yuan M; Wang H; Yao S; Shi S; Yu Z; Xu D; Gong G; Wei K
    Basic Res Cardiol; 2024 Feb; 119(1):169-192. PubMed ID: 38147128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiomyocyte death and renewal in the normal and diseased heart.
    Buja LM; Vela D
    Cardiovasc Pathol; 2008; 17(6):349-74. PubMed ID: 18402842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural crest-derived stem cells migrate and differentiate into cardiomyocytes after myocardial infarction.
    Tamura Y; Matsumura K; Sano M; Tabata H; Kimura K; Ieda M; Arai T; Ohno Y; Kanazawa H; Yuasa S; Kaneda R; Makino S; Nakajima K; Okano H; Fukuda K
    Arterioscler Thromb Vasc Biol; 2011 Mar; 31(3):582-9. PubMed ID: 21212399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding cardiomyocyte proliferation: an insight into cell cycle activity.
    Ponnusamy M; Li PF; Wang K
    Cell Mol Life Sci; 2017 Mar; 74(6):1019-1034. PubMed ID: 27695872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNA profiling during rat ventricular maturation: A role for miR-29a in regulating cardiomyocyte cell cycle re-entry.
    Cao X; Wang J; Wang Z; Du J; Yuan X; Huang W; Meng J; Gu H; Nie Y; Ji B; Hu S; Zheng Z
    FEBS Lett; 2013 May; 587(10):1548-55. PubMed ID: 23587482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of microRNAs in cardiac development and regenerative capacity.
    Katz MG; Fargnoli AS; Kendle AP; Hajjar RJ; Bridges CR
    Am J Physiol Heart Circ Physiol; 2016 Mar; 310(5):H528-41. PubMed ID: 26702142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of Neonatal Heart Regeneration.
    Cardoso AC; Pereira AHM; Sadek HA
    Curr Cardiol Rep; 2020 Apr; 22(5):33. PubMed ID: 32333123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of endogenous cardiomyocyte proliferation: The known unknowns.
    Secco I; Giacca M
    J Mol Cell Cardiol; 2023 Jun; 179():80-89. PubMed ID: 37030487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.