These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24623390)

  • 1. Multi-objective molecular de novo design by adaptive fragment prioritization.
    Reutlinger M; Rodrigues T; Schneider P; Schneider G
    Angew Chem Int Ed Engl; 2014 Apr; 53(16):4244-8. PubMed ID: 24623390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining on-chip synthesis of a focused combinatorial library with computational target prediction reveals imidazopyridine GPCR ligands.
    Reutlinger M; Rodrigues T; Schneider P; Schneider G
    Angew Chem Int Ed Engl; 2014 Jan; 53(2):582-5. PubMed ID: 24282133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multidimensional de novo design reveals 5-HT2B receptor-selective ligands.
    Rodrigues T; Hauser N; Reker D; Reutlinger M; Wunderlin T; Hamon J; Koch G; Schneider G
    Angew Chem Int Ed Engl; 2015 Jan; 54(5):1551-5. PubMed ID: 25475886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combinatorial chemistry by ant colony optimization.
    Hiss JA; Reutlinger M; Koch CP; Perna AM; Schneider P; Rodrigues T; Haller S; Folkers G; Weber L; Baleeiro RB; Walden P; Wrede P; Schneider G
    Future Med Chem; 2014 Mar; 6(3):267-80. PubMed ID: 24575965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo drug design: integration of structure-based and ligand-based methods.
    Dean PM; Lloyd DG; Todorov NP
    Curr Opin Drug Discov Devel; 2004 May; 7(3):347-53. PubMed ID: 15216939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategies for designing GPCR-focused libraries and screening sets.
    Jimonet P; Jäger R
    Curr Opin Drug Discov Devel; 2004 May; 7(3):325-33. PubMed ID: 15216936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concept of combinatorial de novo design of drug-like molecules by particle swarm optimization.
    Hartenfeller M; Proschak E; Schüller A; Schneider G
    Chem Biol Drug Des; 2008 Jul; 72(1):16-26. PubMed ID: 18564216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing Multi-target Compound Libraries with Gaussian Process Models.
    Bieler M; Reutlinger M; Rodrigues T; Schneider P; Kriegl JM; Schneider G
    Mol Inform; 2016 May; 35(5):192-8. PubMed ID: 27492085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational approaches to structure-based ligand design.
    Joseph-McCarthy D
    Pharmacol Ther; 1999 Nov; 84(2):179-91. PubMed ID: 10596905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-based design of inhibitors of the aspartic protease endothiapepsin by exploiting dynamic combinatorial chemistry.
    Mondal M; Radeva N; Köster H; Park A; Potamitis C; Zervou M; Klebe G; Hirsch AK
    Angew Chem Int Ed Engl; 2014 Mar; 53(12):3259-63. PubMed ID: 24532096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of an Aurora kinase inhibitor through site-specific dynamic combinatorial chemistry.
    Cancilla MT; He MM; Viswanathan N; Simmons RL; Taylor M; Fung AD; Cao K; Erlanson DA
    Bioorg Med Chem Lett; 2008 Jul; 18(14):3978-81. PubMed ID: 18579375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo design: balancing novelty and confined chemical space.
    Kutchukian PS; Shakhnovich EI
    Expert Opin Drug Discov; 2010 Aug; 5(8):789-812. PubMed ID: 22827800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parallel synthesis and biological screening of dopamine receptor ligands taking advantage of a click chemistry based BAL linker.
    Bettinetti L; Löber S; Hübner H; Gmeiner P
    J Comb Chem; 2005; 7(2):309-16. PubMed ID: 15762761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overview on the current status on virtual high-throughput screening and combinatorial chemistry approaches in multi-target anticancer drug discovery; Part II.
    Geromichalos GD; Alifieris CE; Geromichalou EG; Trafalis DT
    J BUON; 2016; 21(6):1337-1358. PubMed ID: 28039691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligand-based combinatorial design of selective purinergic receptor (A2A) antagonists using self-organizing maps.
    Schneider G; Nettekoven M
    J Comb Chem; 2003; 5(3):233-7. PubMed ID: 12739938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formal concept analysis for the identification of molecular fragment combinations specific for active and highly potent compounds.
    Lounkine E; Auer J; Bajorath J
    J Med Chem; 2008 Sep; 51(17):5342-8. PubMed ID: 18698757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De novo design - hop(p)ing against hope.
    Schneider G
    Drug Discov Today Technol; 2013 Dec; 10(4):e453-60. PubMed ID: 24451634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-based generation of viable leads from small combinatorial libraries.
    Laird ER; Blake JF
    Curr Opin Drug Discov Devel; 2004 May; 7(3):354-9. PubMed ID: 15216940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combinatorial QSAR modeling of specificity and subtype selectivity of ligands binding to serotonin receptors 5HT1E and 5HT1F.
    Wang XS; Tang H; Golbraikh A; Tropsha A
    J Chem Inf Model; 2008 May; 48(5):997-1013. PubMed ID: 18470978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voyages to the (un)known: adaptive design of bioactive compounds.
    Schneider G; Hartenfeller M; Reutlinger M; Tanrikulu Y; Proschak E; Schneider P
    Trends Biotechnol; 2009 Jan; 27(1):18-26. PubMed ID: 19004513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.