BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 24623401)

  • 1. Antifatigue properties of dragonfly Pantala flavescens wings.
    Li XJ; Zhang ZH; Liang YH; Ren LQ; Jie M; Yang ZG
    Microsc Res Tech; 2014 May; 77(5):356-62. PubMed ID: 24623401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastructure of dragonfly wing veins: composite structure of fibrous material supplemented by resilin.
    Appel E; Heepe L; Lin CP; Gorb SN
    J Anat; 2015 Oct; 227(4):561-82. PubMed ID: 26352411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dragonfly wing nodus: A one-way hinge contributing to the asymmetric wing deformation.
    Rajabi H; Ghoroubi N; Stamm K; Appel E; Gorb SN
    Acta Biomater; 2017 Sep; 60():330-338. PubMed ID: 28739543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resilin microjoints: a smart design strategy to avoid failure in dragonfly wings.
    Rajabi H; Shafiei A; Darvizeh A; Gorb SN
    Sci Rep; 2016 Dec; 6():39039. PubMed ID: 27966641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological and mechanical characterisation of the hindwing nodus from the Libellulidae family of dragonfly (Indonesia).
    Fauziyah S; Alam C; Soesilohadi RC; Retnoaji B; Alam P
    Arthropod Struct Dev; 2014 Sep; 43(5):415-22. PubMed ID: 25033711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinspiration of the vein structure of dragonfly wings on its flight characteristics.
    Liu C; Du R; Li F; Sun J
    Microsc Res Tech; 2022 Mar; 85(3):829-839. PubMed ID: 34581475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of blood in veins of dragonfly wing on the vibration characteristics.
    Hou D; Yin Y; Zhao H; Zhong Z
    Comput Biol Med; 2015 Mar; 58():14-9. PubMed ID: 25577611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of the wing colouration in the dragonfly Zenithoptera lanei (Odonata: Libellulidae) and its role in intraspecific communication.
    Guillermo-Ferreira R; Bispo PC; Appel E; Kovalev A; Gorb SN
    J Insect Physiol; 2015 Oct; 81():129-36. PubMed ID: 26188874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the fracture resistance of dragonfly wings.
    Rudolf J; Wang LY; Gorb SN; Rajabi H
    J Mech Behav Biomed Mater; 2019 Nov; 99():127-133. PubMed ID: 31351402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assembly modes of dragonfly wings.
    Zhao HX; Yin YJ; Zhong Z
    Microsc Res Tech; 2011 Dec; 74(12):1134-8. PubMed ID: 21538699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic flight stability of a hovering model dragonfly.
    Liang B; Sun M
    J Theor Biol; 2014 May; 348():100-12. PubMed ID: 24486234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micro-morphological adaptations of the wing nodus to flight behaviour in four dragonfly species from the family Libellulidae (Odonata: Anisoptera).
    Rajabi H; Stamm K; Appel E; Gorb SN
    Arthropod Struct Dev; 2018 Jul; 47(4):442-448. PubMed ID: 29339328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerodynamic characteristics along the wing span of a dragonfly
    Hefler C; Qiu H; Shyy W
    J Exp Biol; 2018 Oct; 221(Pt 19):. PubMed ID: 30108128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D reconstruction and analysis of wing deformation in free-flying dragonflies.
    Koehler C; Liang Z; Gaston Z; Wan H; Dong H
    J Exp Biol; 2012 Sep; 215(Pt 17):3018-27. PubMed ID: 22660780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Basal Complex and Basal Venation of Odonata Wings: Structural Diversity and Potential Role in the Wing Deformation.
    Rajabi H; Ghoroubi N; Malaki M; Darvizeh A; Gorb SN
    PLoS One; 2016; 11(8):e0160610. PubMed ID: 27513753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new torsion control mechanism induced by blood circulation in dragonfly wings.
    Hou D; Yin Y; Zhong Z; Zhao H
    Bioinspir Biomim; 2015 Feb; 10(1):016020. PubMed ID: 25656051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual role of outer epicuticular lipids in determining the wettability of dragonfly wings.
    Nguyen SH; Webb HK; Hasan J; Tobin MJ; Crawford RJ; Ivanova EP
    Colloids Surf B Biointerfaces; 2013 Jun; 106():126-34. PubMed ID: 23434701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of modularity and integration suggests evolution of dragonfly wing venation mainly in response to functional demands.
    Blanke A
    J R Soc Interface; 2018 Aug; 15(145):. PubMed ID: 30158178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deformation behavior of dragonfly-inspired nodus structured wing in gliding flight through experimental visualization approach.
    Zhang S; Sunami Y; Hashimoto H
    Sci Rep; 2018 Apr; 8(1):5751. PubMed ID: 29636549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Force measurements of flexible tandem wings in hovering and forward flights.
    Zheng Y; Wu Y; Tang H
    Bioinspir Biomim; 2015 Feb; 10(1):016021. PubMed ID: 25656164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.