These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Kv1 channels regulate variations in spike patterning and temporal reliability in the avian cochlear nucleus angularis. Baldassano JF; MacLeod KM J Neurophysiol; 2022 Jan; 127(1):116-129. PubMed ID: 34817286 [TBL] [Abstract][Full Text] [Related]
5. Intrinsic physiological properties underlie auditory response diversity in the avian cochlear nucleus. Brown DH; Hyson RL J Neurophysiol; 2019 Mar; 121(3):908-927. PubMed ID: 30649984 [TBL] [Abstract][Full Text] [Related]
6. Tonotopic Optimization for Temporal Processing in the Cochlear Nucleus. Oline SN; Ashida G; Burger RM J Neurosci; 2016 Aug; 36(32):8500-15. PubMed ID: 27511020 [TBL] [Abstract][Full Text] [Related]
7. A rapid form of activity-dependent recovery from short-term synaptic depression in the intensity pathway of the auditory brainstem. MacLeod KM; Horiuchi TK Biol Cybern; 2011 Mar; 104(3):209-23. PubMed ID: 21409439 [TBL] [Abstract][Full Text] [Related]
9. Synaptic physiology in the cochlear nucleus angularis of the chick. MacLeod KM; Carr CE J Neurophysiol; 2005 May; 93(5):2520-9. PubMed ID: 15615833 [TBL] [Abstract][Full Text] [Related]
10. Transmission of auditory sensory information decreases in rate and temporal precision at the endbulb of Held synapse during age-related hearing loss. Xie R J Neurophysiol; 2016 Dec; 116(6):2695-2705. PubMed ID: 27683884 [TBL] [Abstract][Full Text] [Related]
11. Maturation of synaptic transmission at end-bulb synapses of the cochlear nucleus. Brenowitz S; Trussell LO J Neurosci; 2001 Dec; 21(23):9487-98. PubMed ID: 11717383 [TBL] [Abstract][Full Text] [Related]
12. Chaos-induced modulation of reliability boosts output firing rate in downstream cortical areas. Tiesinga PH Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 1):031912. PubMed ID: 15089327 [TBL] [Abstract][Full Text] [Related]
13. Encoding of information into neural spike trains in an auditory nerve fiber model with electric stimuli in the presence of a pseudospontaneous activity. Mino H IEEE Trans Biomed Eng; 2007 Mar; 54(3):360-9. PubMed ID: 17355047 [TBL] [Abstract][Full Text] [Related]
15. Radiate and Planar Multipolar Neurons of the Mouse Anteroventral Cochlear Nucleus: Intrinsic Excitability and Characterization of their Auditory Nerve Input. Xie R; Manis PB Front Neural Circuits; 2017; 11():77. PubMed ID: 29093666 [TBL] [Abstract][Full Text] [Related]
16. Auditory information coding by modeled cochlear nucleus neurons. Wang H; Isik M; Borst A; Hemmert W J Comput Neurosci; 2011 Jun; 30(3):529-42. PubMed ID: 20862531 [TBL] [Abstract][Full Text] [Related]
17. Early development of intrinsic and synaptic properties of chicken nucleus laminaris neurons. Gao H; Lu Y Neuroscience; 2008 Apr; 153(1):131-43. PubMed ID: 18355968 [TBL] [Abstract][Full Text] [Related]
18. Intracellular response properties of units in the dorsal cochlear nucleus of unanesthetized decerebrate gerbil. Ding J; Voigt HF J Neurophysiol; 1997 May; 77(5):2549-72. PubMed ID: 9163376 [TBL] [Abstract][Full Text] [Related]
19. Spike-timing precision underlies the coding efficiency of auditory receptor neurons. Rokem A; Watzl S; Gollisch T; Stemmler M; Herz AV; Samengo I J Neurophysiol; 2006 Apr; 95(4):2541-52. PubMed ID: 16354733 [TBL] [Abstract][Full Text] [Related]
20. Encoding of amplitude modulation in the cochlear nucleus of the cat. Rhode WS; Greenberg S J Neurophysiol; 1994 May; 71(5):1797-825. PubMed ID: 8064349 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]