These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 24623556)

  • 1. Riboflavin-based fluorogenic sensor for chemo- and enantioselective detection of amine vapors.
    Iida H; Miki M; Iwahana S; Yashima E
    Chemistry; 2014 Apr; 20(15):4257-62. PubMed ID: 24623556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "Turn-on" fluorescent polymeric microparticle sensors for the determination of ammonia and amines in the vapor state.
    Takagai Y; Nojiri Y; Takase T; Hinze WL; Butsugan M; Igarashi S
    Analyst; 2010 Jun; 135(6):1417-25. PubMed ID: 20498886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A convenient fluorescent method to simultaneously determine the enantiomeric composition and concentration of functional chiral amines.
    Huang Z; Yu S; Zhao X; Wen K; Xu Y; Yu X; Xu Y; Pu L
    Chemistry; 2014 Dec; 20(50):16458-61. PubMed ID: 25348091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Main-chain optically active riboflavin polymer for asymmetric catalysis and its vapochromic behavior.
    Iida H; Iwahana S; Mizoguchi T; Yashima E
    J Am Chem Soc; 2012 Sep; 134(36):15103-13. PubMed ID: 22894539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hg(2+) -induced in situ generated radical cation of (S)-BINOL-based polymer for highly enantioselective recognition of phenylalaninol.
    Jiao J; Li F; Zhang S; Quan Y; Zheng W; Cheng Y; Zhu C
    Macromol Rapid Commun; 2014 Aug; 35(16):1443-9. PubMed ID: 25048009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enantioselective fluorescent sensors: a tale of BINOL.
    Pu L
    Acc Chem Res; 2012 Feb; 45(2):150-63. PubMed ID: 21834528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the Optoelectronic Performance of Neutral and Cationic Forms of Riboflavin.
    Saltan GM; Kıymaz DA; Zafer C; Dinçalp H
    J Fluoresc; 2017 Nov; 27(6):1975-1984. PubMed ID: 28687984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescent imprinted polymer sensors for chiral amines.
    Nguyen TH; Ansell RJ
    Org Biomol Chem; 2009 Mar; 7(6):1211-20. PubMed ID: 19262942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple and Efficient Chromophoric-Fluorogenic Probes for Diethylchlorophosphate Vapor.
    Fu Y; Yu J; Wang K; Liu H; Yu Y; Liu A; Peng X; He Q; Cao H; Cheng J
    ACS Sens; 2018 Aug; 3(8):1445-1450. PubMed ID: 30059204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A ratiometric fluorescent probe for sensitive, selective and reversible detection of copper (II) based on riboflavin-stabilized gold nanoclusters.
    Zhang M; Le HN; Jiang XQ; Guo SM; Yu HJ; Ye BC
    Talanta; 2013 Dec; 117():399-404. PubMed ID: 24209359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fluorescence-switchable luminogen in the solid state: a sensitive and selective sensor for the fast "turn-on" detection of primary amine gas.
    Han T; Lam JW; Zhao N; Gao M; Yang Z; Zhao E; Dong Y; Tang BZ
    Chem Commun (Camb); 2013 May; 49(42):4848-50. PubMed ID: 23598891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. General but discriminating fluorescent chemosensor for aliphatic amines.
    Lu G; Grossman JE; Lambert JB
    J Org Chem; 2006 Mar; 71(5):1769-76. PubMed ID: 16496960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of zinc ions under aqueous conditions using chirality assisted solid-state fluorescence of a bipyridyl based fluorophore.
    Sreejith S; Divya KP; Ajayaghosh A
    Chem Commun (Camb); 2008 Jul; (25):2903-5. PubMed ID: 18566719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A coumarin-based portable fluorescent probe for rapid turn-on detection of amine vapors.
    Meng Y; Yuan C; Du C; Jia K; Liu C; Wang KP; Chen S; Hu ZQ
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Dec; 262():120152. PubMed ID: 34256238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enantioselective recognition of mandelic acid by a 3,6-dithiophen-2-yl-9H-carbazole-based chiral fluorescent bisboronic acid sensor.
    Wu Y; Guo H; James TD; Zhao J
    J Org Chem; 2011 Jul; 76(14):5685-95. PubMed ID: 21619028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence "turn-on" patterning with polymers having pendant triphenylmethane groups as fluorophore precursors.
    Kim J; Cho J; Lee J; Park K; Kim JM
    Macromol Rapid Commun; 2011 Jun; 32(12):870-5. PubMed ID: 21520480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A pair of chiral fluorescent sensors for enantioselective recognition of mandelate in water.
    Xu KX; Kong HJ; Zu FL; Yang L; Wang CJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():811-5. PubMed ID: 24157333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Turn-on fluorescent sensor for selective detection of Zn(2+), Cd(2+), and Hg(2+) in water.
    Li M; Lu HY; Liu RL; Chen JD; Chen CF
    J Org Chem; 2012 Apr; 77(7):3670-3. PubMed ID: 22420536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forced solid-state interactions for the selective "turn-on" fluorescence sensing of aluminum ions in water using a sensory polymer substrate.
    Vallejos S; Muñoz A; Ibeas S; Serna F; García FC; García JM
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):921-8. PubMed ID: 25475442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterned recognition of amines and ammonium ions by a stimuli-responsive foldamer-based hexameric oligophenol host.
    Sun C; Ren C; Wei Y; Qin B; Zeng H
    Chem Commun (Camb); 2013 Jun; 49(46):5307-9. PubMed ID: 23636407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.