BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24624317)

  • 1. Bioconversion of xylose, hexoses and biomass to ethanol by a new isolate of the white rot basidiomycete Trametes versicolor.
    Okamoto K; Uchii A; Kanawaku R; Yanase H
    Springerplus; 2014; 3():121. PubMed ID: 24624317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient xylose fermentation by the brown rot fungus Neolentinus lepideus.
    Okamoto K; Kanawaku R; Masumoto M; Yanase H
    Enzyme Microb Technol; 2012 Feb; 50(2):96-100. PubMed ID: 22226194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trametes hirsuta.
    Okamoto K; Nitta Y; Maekawa N; Yanase H
    Enzyme Microb Technol; 2011 Mar; 48(3):273-7. PubMed ID: 22112911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous bioconversion of cellulose and hemicellulose to ethanol.
    Chandrakant P; Bisaria VS
    Crit Rev Biotechnol; 1998; 18(4):295-331. PubMed ID: 9887507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Largely enhanced bioethanol production through the combined use of lignin-modified sugarcane and xylose fermenting yeast strain.
    Ko JK; Jung JH; Altpeter F; Kannan B; Kim HE; Kim KH; Alper HS; Um Y; Lee SM
    Bioresour Technol; 2018 May; 256():312-320. PubMed ID: 29455099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-fermentation of cellobiose and xylose using beta-glucosidase displaying diploid industrial yeast strain OC-2.
    Saitoh S; Hasunuma T; Tanaka T; Kondo A
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1975-82. PubMed ID: 20552354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient conversion of xylose to ethanol without glucose repression by newly isolated thermotolerant Spathaspora passalidarum CMUWF1-2.
    Rodrussamee N; Sattayawat P; Yamada M
    BMC Microbiol; 2018 Jul; 18(1):73. PubMed ID: 30005621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved bioethanol production using fusants of Saccharomyces cerevisiae and xylose-fermenting yeasts.
    Kumari R; Pramanik K
    Appl Biochem Biotechnol; 2012 Jun; 167(4):873-84. PubMed ID: 22639357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioethanol production by a xylan fermenting thermophilic isolate Clostridium strain DBT-IOC-DC21.
    Singh N; Puri M; Tuli DK; Gupta RP; Barrow CJ; Mathur AS
    Anaerobe; 2018 Jun; 51():89-98. PubMed ID: 29729318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose, and arabinose.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 2002; 98-100():429-48. PubMed ID: 12018270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separate hydrolysis and co-fermentation for improved xylose utilization in integrated ethanol production from wheat meal and wheat straw.
    Erdei B; Frankó B; Galbe M; Zacchi G
    Biotechnol Biofuels; 2012 Mar; 5():12. PubMed ID: 22410131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current state-of-the-art in ethanol production from lignocellulosic feedstocks.
    Robak K; Balcerek M
    Microbiol Res; 2020 Nov; 240():126534. PubMed ID: 32683278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conservation of Xylose Fermentability in Phlebia Species and Direct Fermentation of Xylan by Selected Fungi.
    Kamei I; Uchida K; Ardianti V
    Appl Biochem Biotechnol; 2020 Nov; 192(3):895-909. PubMed ID: 32607899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic improvement of native xylose-fermenting yeasts for ethanol production.
    Harner NK; Wen X; Bajwa PK; Austin GD; Ho CY; Habash MB; Trevors JT; Lee H
    J Ind Microbiol Biotechnol; 2015 Jan; 42(1):1-20. PubMed ID: 25404205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dekkera/Brettanomyces yeasts for ethanol production from renewable sources under oxygen-limited and low-pH conditions.
    Galafassi S; Merico A; Pizza F; Hellborg L; Molinari F; Piškur J; Compagno C
    J Ind Microbiol Biotechnol; 2011 Aug; 38(8):1079-88. PubMed ID: 20936422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Xylose fermentation as a challenge for commercialization of lignocellulosic fuels and chemicals.
    Sànchez Nogué V; Karhumaa K
    Biotechnol Lett; 2015 Apr; 37(4):761-72. PubMed ID: 25522734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethanol Production from Various Sugars and Cellulosic Biomass by White Rot Fungus Lenzites betulinus.
    Im KH; Nguyen TK; Choi J; Lee TS
    Mycobiology; 2016 Mar; 44(1):48-53. PubMed ID: 27103854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway.
    Ko JK; Um Y; Woo HM; Kim KH; Lee SM
    Bioresour Technol; 2016 Jun; 209():290-6. PubMed ID: 26990396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fermentation of hexoses and pentoses from sugarcane bagasse hydrolysates into ethanol by Spathaspora hagerdaliae.
    Rech FR; Fontana RC; Rosa CA; Camassola M; Ayub MAZ; Dillon AJP
    Bioprocess Biosyst Eng; 2019 Jan; 42(1):83-92. PubMed ID: 30264227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct bioethanol production from wheat straw using xylose/glucose co-fermentation by co-culture of two recombinant yeasts.
    Zhang Y; Wang C; Wang L; Yang R; Hou P; Liu J
    J Ind Microbiol Biotechnol; 2017 Mar; 44(3):453-464. PubMed ID: 28101807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.