BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 24624828)

  • 1. [Results of analysis of ratios of indices of toxic and sensory effect of chemicals].
    Novikov SM; Shashina TA
    Gig Sanit; 2013; (6):78-80. PubMed ID: 24624828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 15th International Symposium on Toxicity Assessment : new directions in ecotoxicology and meeting the challenges ahead.
    Au DW
    Environ Sci Pollut Res Int; 2011 Aug; 19(7):2463-4. PubMed ID: 22678546
    [No Abstract]   [Full Text] [Related]  

  • 3. In silico prediction of Tetrahymena pyriformis toxicity for diverse industrial chemicals with substructure pattern recognition and machine learning methods.
    Cheng F; Shen J; Yu Y; Li W; Liu G; Lee PW; Tang Y
    Chemosphere; 2011 Mar; 82(11):1636-43. PubMed ID: 21145574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the application of loss functions in determining assessment factors for ecological risk.
    Hickey GL; Craig PS; Hart A
    Ecotoxicol Environ Saf; 2009 Feb; 72(2):293-300. PubMed ID: 18691758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Re: "Comparison of in vivo (Draize method) and in vitro (Corrositex assay) dermal corrosion values for selected industrial chemicals".
    Ulmer WR
    Int J Toxicol; 2003; 22(6):475-6; author response 476-8. PubMed ID: 14680995
    [No Abstract]   [Full Text] [Related]  

  • 6. Recommended default methodology for analysis of airborne exposures to mixtures of chemicals in emergencies.
    Craig DK; Baskett RL; Davis JS; Dukes L; Hansen DJ; Petrocchi AJ; Powell TJ; Sutherland PJ; Tuccinardi TE
    Appl Occup Environ Hyg; 1999 Sep; 14(9):609-17. PubMed ID: 10510523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QSAR modeling of cumulative environmental end-points for the prioritization of hazardous chemicals.
    Gramatica P; Papa E; Sangion A
    Environ Sci Process Impacts; 2018 Jan; 20(1):38-47. PubMed ID: 29226926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Toxicogenomics in hazard assessment of chemicals].
    Kostka G; Liszewska M; Urbanek-Olejnik K
    Rocz Panstw Zakl Hig; 2010; 61(2):119-27. PubMed ID: 20839457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological modes of action across species and toxicants: the key to predictive ecotoxicology.
    Ashauer R; Jager T
    Environ Sci Process Impacts; 2018 Jan; 20(1):48-57. PubMed ID: 29090718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracking toxicants: toward a life cycle aware risk assessment.
    Kuczenski B; Geyer R; Boughton B
    Environ Sci Technol; 2011 Jan; 45(1):45-50. PubMed ID: 20977239
    [No Abstract]   [Full Text] [Related]  

  • 11. Is the integration of hormesis and essentiality into ecotoxicology now opening Pandora's Box?
    Kefford BJ; Zalizniak L; Warne MS; Nugegoda D
    Environ Pollut; 2008 Feb; 151(3):516-23. PubMed ID: 17559995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vision & strategy: Predictive ecotoxicology in the 21st century.
    Villeneuve DL; Garcia-Reyero N
    Environ Toxicol Chem; 2011 Jan; 30(1):1-8. PubMed ID: 21182100
    [No Abstract]   [Full Text] [Related]  

  • 13. An evaluation of the implementation of the Cramer classification scheme in the Toxtree software.
    Patlewicz G; Jeliazkova N; Safford RJ; Worth AP; Aleksiev B
    SAR QSAR Environ Res; 2008; 19(5-6):495-524. PubMed ID: 18853299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning from Sisyphus: time to rethink our current, ineffective strategy on neurodevelopmental environmental toxicants.
    Takser L; Hunting DJ
    Environ Health; 2020 Mar; 19(1):31. PubMed ID: 32160895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directions in QSAR modeling for regulatory uses in OECD member countries, EU and in Russia.
    Fjodorova N; Novich M; Vrachko M; Smirnov V; Kharchevnikova N; Zholdakova Z; Novikov S; Skvortsova N; Filimonov D; Poroikov V; Benfenati E
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2008; 26(2):201-36. PubMed ID: 18569330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 10th Anniversary Critical Review: The tissue-residue approach for toxicity assessment: concepts, issues, application, and recommendations.
    Meador JP; McCarty LS; Escher BI; Adams WJ
    J Environ Monit; 2008 Dec; 10(12):1486-98. PubMed ID: 19037491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of chemical reaction mechanistic domains to an ecotoxicity QSAR model, the KAshinhou Tool for Ecotoxicity (KATE).
    Furuhama A; Hasunuma K; Aoki Y; Yoshioka Y; Shiraishi H
    SAR QSAR Environ Res; 2011; 22(5-6):505-23. PubMed ID: 21604231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicological information on chemicals published in the Russian language: Contribution to REACH and 3Rs.
    Sihtmäe M; Dubourguier HC; Kahru A
    Toxicology; 2009 Jul; 262(1):27-37. PubMed ID: 19433131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ecetoc approach to targeted environmental risk assessment.
    Feijtel T; Boeije G; Comber M; de Wolf W; Holt M; Koch V; Lecloux A; Siebel-Sauer A
    Environ Toxicol Chem; 2005 Feb; 24(2):251-2. PubMed ID: 15719982
    [No Abstract]   [Full Text] [Related]  

  • 20. A comparative survey of chemistry-driven in silico methods to identify hazardous substances under REACH.
    Nendza M; Gabbert S; Kühne R; Lombardo A; Roncaglioni A; Benfenati E; Benigni R; Bossa C; Strempel S; Scheringer M; Fernández A; Rallo R; Giralt F; Dimitrov S; Mekenyan O; Bringezu F; Schüürmann G
    Regul Toxicol Pharmacol; 2013 Aug; 66(3):301-14. PubMed ID: 23707536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.